...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO(2) and 'ocean acidification': Role of high Mg-calcites
【24h】

Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO(2) and 'ocean acidification': Role of high Mg-calcites

机译:富含碳酸盐的陆架沉积物对上升的大气pCO(2)和“海洋酸化”的初始响应:高镁方解石的作用

获取原文
获取原文并翻译 | 示例

摘要

Carbonate-rich sediments at shoal to shelf depths (< 200 m) represent a major CaCO3 reservoir that can rapidly react to the decreasing saturation state of seawater with respect to carbonate minerals, produced by the increasing partial pressure of atmospheric carbon dioxide (pCO(2)) and "acidification" of ocean waters. Aragonite is usually the most abundant carbonate mineral in these sediments. However, the second most abundant (typically similar to 24 wt%) carbonate mineral is high Mg-calcite (Mg-calcite) whose solubility can exceed that of aragonite making it the "first responder" to the decreasing saturation state of seawater. For the naturally occurring biogenic Mg-calcites, dissolution experiments have been used to predict their "stoichiometric solubilities" as a function of mol% MgCO3. The only valid relationship that one can provisionally use for the metastable stabilities for Mg-calcite based on composition is that for the synthetically produced phases where metastable equilibrium has been achieved from both under- and over-saturation. Biogenic Mg-calcites exhibit a large offset in solubility from that of abiotic Mg-calcite and can also exhibit a wide range of solubilities for biogenic Mg-calcites of similar Mg content. This indicates that factors other than the Mg content can influence the solubility of these mineral phases. Thus, it is necessary to turn to observations of natural sediments where changes in the saturation state of surrounding waters occur in order to determine their likely responses to the changing saturation state in upper oceanic waters brought on by increasing pCO(2). In the present study, we investigate the responses of Mg-calcites to rising pCO(2) and "ocean acidification" by means of a simple numerical model based on the experimental range of biogenic Mg-calcite solubilities as a function of Mg content in order to bracket the behavior of the most abundant Mg-calcite phases in the natural environment. In addition, observational data from Bermuda and the Great Bahama Bank are also presented in order to project future responses of these minerals. The numerical simulations suggest that Mg-calcite minerals will respond to rising pCO(2) by sequential dissolution according to mineral stability, progressively leading to removal of the more soluble phases until the least soluble phases remain. These results are confirmed by laboratory experiments and observations from Bermuda. As a consequence of continuous increases in atmospheric CO, from burning of fossil fuels, the average composition of contemporary carbonate sediments could change, i.e., the average Mg content in the sediments may slowly decrease. Furthermore, evidence from the Great Bahama Bank indicates that the amount of abiotic carbonate production is likely to decline as pCO(2) continues to rise. (c) 2006 Elsevier Inc. All rights reserved.
机译:浅滩至陆架深度(<200 m)的富含碳酸盐的沉积物代表了一个主要的CaCO3储层,该储层可以迅速响应海水对碳酸盐矿物的饱和状态的降低,这是由大气二氧化碳分压(pCO(2 ))和海水“酸化”。文石通常是这些沉积物中含量最丰富的碳酸盐矿物。但是,第二丰富的(通常与24 wt%相似)的碳酸盐矿物是高镁方解石(Mg方解石),其溶解度可以超过文石,因此使其成为海水饱和状态下降的“第一响应者”。对于天然存在的生物镁方解石,溶解实验已被用来预测其“化学计量的溶解度”与mol%MgCO3的关系。暂时可以根据组成对M-方解石的亚稳稳定性临时使用的唯一有效关系是,对于合成生产的相,其中饱和和过饱和都达到了亚稳平衡。与非生物Mg-方解石的溶解性相比,生物Mg-方解石的溶解度有很大的偏移,并且对于相似Mg含量的生物Mg-方解石,其生物溶解度范围也很广。这表明Mg含量以外的其他因素也会影响这些矿物相的溶解度。因此,有必要转向对天然沉积物的观测,在这些沉积物中周围水的饱和状态发生变化,以确定它们对增加pCO(2)引起的上层海洋水饱和状态变化的可能响应。在本研究中,我们根据生物成因方解石溶解度的实验范围作为镁含量的函数,通过简单的数值模型研究了方解石对pCO(2)升高和“海洋酸化”的响应。来概括自然环境中最丰富的Mg-方解石相的行为。此外,还提供了百慕大和大巴哈马银行的观测数据,以便预测这些矿物的未来反应。数值模拟表明,Mg-方解石矿物将根据矿物的稳定性通过顺序溶解来响应不断升高的pCO(2),从而逐步导致去除更多可溶相,直到剩下最不溶相。这些结果通过百慕大的实验室实验和观察得到了证实。由于燃烧化石燃料导致大气中CO持续增加的结果,当代碳酸盐沉积物的平均成分可能会发生变化,即,沉积物中平均Mg含量可能会缓慢下降。此外,大巴哈马银行的证据表明,随着pCO(2)继续增加,非生物碳酸盐的生产量可能会下降。 (c)2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号