...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria
【24h】

Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria

机译:Fe(II)氧化光自养细菌形成Fe(III)矿物

获取原文
获取原文并翻译 | 示例

摘要

It has been suggested that Fe(II)-oxidizing photoautotrophic bacteria may have catalyzed the precipitation of an ancient class of sedimentary deposits known as Banded Iron Formations. In order to evaluate this claim, it is necessary to define and understand this process at a molecular level so that putative Fe-isotope "biosignatures" in ancient rocks can be interpreted. In this report, we characterize the substrates and products of photoautotrophic Fe(II)-oxidation by three phylogenetically distinct Fe(II)-oxidizing bacteria. In every case, dissolved Fe(II) is used as the substrate for oxidation, and there is no evidence for active dissolution of poorly soluble Fe(II)-minerals by biogenic organic ligands. Poorly crystalline Fe(III) (hydr)oxide mineral phases are initially precipitated, and as they age, rapidly convert to the crystalline minerals goethite and lepidocrocite. Although the precipitates appear to associate with the cell wall, they do not cover it entirely, and precipitate-free cells represent a significant portion of the population in aged cultures. Citrate is occasionally detected at nanomolar concentrations in all culture fluids, whereas an unknown organic molecule is always present in two out of the three bacterial cultures. Whether these molecules are released by the cell to bind Fe(III) and prevent the cell from encrustation by Fe(III) (hydr)oxides is uncertain, but seems unlikely if we assume Fe(II) -oxidation occurs at the cell surface. In light of the energetic requirement the cell would face to produce ligands for this purpose, and given the local acidity metabolically generated in the microenvironment surrounding Fe(II)-oxidizing cells, our results suggest that Fe(III) is released in a dissolved form as an inorganic aqueous complex and/or as a colloidal aggregate prior to mineral precipitation. The implication of these results for the interpretation of Fe-isotope fractionation measured for this class of bacteria (Croal et al., 2004) is that equilibrium processes involving free biological ligands do not account for the observed fractionation. Copyright (C) 2004 Elsevier Ltd. [References: 46]
机译:有人提出,氧化Fe(II)的光能自养细菌可能已经催化了一种古老的沉积物沉淀,即带状铁层。为了评估这一主张,有必要在分子水平上定义和理解这一过程,以便可以解释古代岩石中公认的铁同位素“生物特征”。在此报告中,我们表征了由三种系统发育不同的Fe(II)氧化细菌引起的光自养性Fe(II)氧化的底物和产物。在每种情况下,都将溶解的Fe(II)用作氧化的底物,没有证据表明可溶的Fe(II)矿物被生物有机配体主动溶解。最初会析出结晶度较弱的Fe(III)(氢氧化)矿物相,随着年龄的增长,它们会迅速转变为针铁矿和纤铁矿的结晶矿物。尽管沉淀物似乎与细胞壁相关,但它们并未完全覆盖细胞壁,无沉淀物的细胞在老化培养物中占人口的很大一部分。在所有培养液中偶尔都可以纳摩尔浓度检测到柠檬酸盐,而三种细菌培养物中的两种中总是存在未知的有机分子。这些分子是否由细胞释放以结合Fe(III)并阻止细胞被Fe(III)(氢氧化)氧化物包裹,尚不确定,但如果我们假设Fe(II)-氧化发生在细胞表面,则似乎不太可能。鉴于能量需求,细胞将面对为此目的而产生配体,并且鉴于在Fe(II)氧化细胞周围的微环境中代谢产生的局部酸度,我们的结果表明Fe(III)以溶解形式释放在矿物沉淀之前以无机含水络合物和/或胶体聚集体形式存在。这些结果对解释这类细菌的铁同位素分馏具有解释意义(Croal等,2004)是涉及游离生物配体的平衡过程不能解释观察到的分馏。版权所有(C)2004 Elsevier Ltd. [引用:46]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号