...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon
【24h】

Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

机译:复杂的半干旱地区环境中无机碳化学和同位素组成的演变:利用放射性碳测年的结果

获取原文
获取原文并翻译 | 示例
           

摘要

Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (C-14) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why C-14 dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and delta C-13(DIC), and low C-14(DIC) could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top similar to 10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on the water salinity driven by drought and periodic flooding conditions. This study shows that although C-14 cannot be directly applied as a dating tool in some circumstances, carbon geochemical/isotopic data can be useful in hydrological investigations related to identifying groundwater sources, mixing relations, recharge processes, geochemical evolution, and interaction with surface water. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.
机译:估算地下水年龄对任何地下水资源评估都很重要,而溶解无机碳(DIC)的放射性碳(C-14)年代可以提供此信息。在半干旱地区(即水禁环境),有很多原因导致地下水的C-14测年和传统校正模型可能无法直接转移。一些包括; (1)这些系统的复杂水文响应导致含水层中不同年龄的混合物,(2)非饱和区有机物的不同来源,起源和年龄,以及(3)高蒸发速率。这些都会影响DIC的发展,在传统的校正模型中不容易解决。在这项研究中,我们确定了碳同位素数据;水中的DIC,沉积物中的碳酸盐矿物,沉积物有机质,来自非饱和区的土壤气体CO2以及植被样品。在长期干旱后和洪水事件后再次收集样品,以捕获不同水文状况后DIC的演变。应用图解法(Han等,2012)解释了碳地球化学和同位素数据。对涉及碳的关键地球化学过程进行了简单的正向质量平衡建模,并与观测数据非常吻合。简单的碳酸盐矿物-CO2气体溶解过程无法解释DIC和δC-13(DIC)的高值,以及C-14(DIC)的低值。取而代之的是,建议在长期干旱期间,水-泥沙相互作用导致顶部的离子交换过程,类似于含水层的10-20 m,从而促进方解石在盐水中的溶解更大。发现该过程贡献了DIC的一半以上,DIC大部分来自“死”碳源。 DIC还受水中DIC与在非饱和带顶部2 m处发现的碳酸盐矿物之间碳交换的影响。发生此过程是因为碳酸盐的反复溶解/沉淀,而碳酸盐的溶解/沉淀取决于干旱和周期性洪水条件驱动的水盐度。这项研究表明,尽管在某些情况下C-14不能直接用作测年工具,但碳地球化学/同位素数据可用于与识别地下水源,混合关系,补给过程,地球化学演化以及与地表相互作用有关的水文调查。水。 Crown版权所有(C)2016,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号