...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor
【24h】

The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor

机译:顽辉陨石的铁同位素组成:对它们的起源和金属/硫化物铁同位素分馏因子的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Despite their unusual chemical composition, it is often proposed that the enstatite chondrites represent a significant component of Earth's building materials, based on their terrestrial similarity for numerous isotope systems. In order to investigate a possible genetic relationship between the Fe isotope composition of enstatite chondrites and the Earth, we have analyzed 22 samples from different subgroups of the enstatite meteorites, including EH and EL chondrites, aubrites (main group and Shallowater) and the Happy Canyon impact melt. We have also analyzed the Fe isotopic compositions of separated (magnetic and non-magnetic) phases from both enstatite chondrites and achondrites. On average, EH3-5 chondrites (delta Fe-56 = 0.003 +/- 0.042 parts per thousand; 2 standard deviation; n = 9; including previous literature data) as well as EL3 chondrites (delta(56) Fe = 0.030 +/- 0.038 parts per thousand; 2 SD; n = 2) have identical and homogeneous Fe isotopic compositions, indistinguishable from those of the carbonaceous chondrites and average terrestrial peridotite. In contrast, EL6 chondrites display a larger range of isotopic compositions (-0.180 parts per thousand< delta Fe-56 < 0.181 parts per thousand; n = 11), a result of mixing between isotopically distinct mineral phases (metal, sulfide and silicate). The large Fe isotopic heterogeneity of EL6 is best explained by chemical/mineralogical fragmentation and brecciation during the complex impact history of the EL parent body. Enstatite achondrites (aubrites) also exhibit a relatively large range of Fe isotope compositions: all main group aubrites are enriched in the light Fe isotopes (delta Fe-56 = -0.170 +/- 0.189 parts per thousand; 2 SD; n = 6), while Shallowater is, isotopically, relatively heavy (delta Fe-56 = 0.045 +/- 0.101 parts per thousand; 2 SD; n = 4; number of chips). We take this variation to suggest that the main group aubrite parent body formed a discreet heavy Fe isotope-enriched core, whilst the Shallowater meteorite is most likely from a different parent body where core and silicate material remixed. This could be due to intensive impact-induced shearing stress, or the ultimate destruction of the Shallowater parent body. Analysis of separated enstatite meteorite mineral phases show that the magnetic phase (Fe metal) is systematically enriched in the heavier Fe isotopes when compared to non-magnetic phases (Fe hosted in troilite), which agrees with previous experimental observations and theoretical calculations. The difference between magnetic and non-magnetic phases from enstatite achondrites provides an equilibrium metal-sulfide Fe isotopic fractionation factor of Delta Fe-56(metal-troilite) - delta Fe-56(metal)-delta Fe-56(troilite) of 0.129 +/- 0.060 parts per thousand (2 SE) at 1060 +/- 80 K, which confirms the predictions of previous theoretical calculations. (C) 2014 Elsevier Ltd. All rights reserved.
机译:尽管它们的化学成分不同寻常,但由于它们在许多同位素系统中的陆地相似性,经常提出顽辉陨石代表地球建筑材料的重要组成部分。为了研究顽辉陨石陨石的铁同位素组成与地球之间可能存在的遗传关系,我们分析了22种陨石陨石亚组的样品,包括EH和EL陨石,奥氏体(主族和Shallowater)和欢乐峡谷冲击融化。我们还分析了顽辉石球粒陨石和长晶陨石分离的(磁性和非磁性)相的铁同位素组成。平均而言,EH3-5球粒体(δFe-56 = 0.003 +/- 0.042千分之二; 2标准偏差; n = 9;包括以前的文献数据)以及EL3球粒体(δ(56)Fe = 0.030 + / -千分之0.038; 2 SD; n = 2)具有相同且均一的Fe同位素组成,与碳质球粒陨石和平均陆地橄榄岩没有区别。相比之下,EL6球粒陨石显示出更大范围的同位素组成(-0.180千份<δFe-56 <0.181千份; n = 11),这是同位素不同的矿物相(金属,硫化物和硅酸盐)之间混合的结果。 EL6的大铁同位素异质性最好通过EL母体复杂撞击历史中的化学/矿物学碎裂和缩晶反应来解释。顽辉长晶陨石(钠长石)也表现出相对较大的铁同位素组成:所有主族的钙长石都富含轻铁同位素(δFe-56 = -0.170 +/- 0.189千分之一; 2 SD; n = 6) ,而Shallowater在同位素上相对较重(δFe-56 = 0.045 +/- 0.101千分之二; 2 SD; n = 4;碎屑数)。我们采用这种变体来表明,主族奥氏体母体形成了一个离散的,重铁同位素富集的核,而沙洛沃特陨石则最有可能来自另一个母体,其中核和硅酸盐物质重新混合。这可能是由于强烈的冲击引起的剪切应力,或者是沙洛沃特母体的最终破坏。分离出的顽辉石陨石矿物相的分析表明,与非磁性相(铁质存在于三叶草中的Fe)相比,较重的Fe同位素中的磁性相(Fe金属)有系统地富集,这与以前的实验观察和理论计算相符。顽辉辉长晶陨石的磁性相和非磁性相之间的差异提供了δFe-56(金属-三菱沸石)-δFe-56(金属)-δFe-56(三菱沸石)的平衡金属硫化物Fe同位素分馏系数+/- 0.060千分之几(2 SE)在1060 +/- 80 K时,证实了先前理论计算的预测。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号