...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory
【24h】

Equilibrium isotopic fractionation of copper during oxidation/reduction, aqueous complexation and ore-forming processes: Predictions from hybrid density functional theory

机译:氧化/还原,水络合和成矿过程中铜的同位素平衡分馏:基于混合密度泛函理论的预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Copper exists as two isotopes: ~(65)Cu (~30.85%) and ~(63)Cu (~69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰% heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS_2), cuprite (Cu_2O), tenorite (CuO) and aqueous Cu~+, Cu~(+2) complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu~+ to Cu~(+2) and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰%) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS_2) to dissolved Cu~(+2) (as Cu(H_2O)_5 ~(+2)) yields ~(65-63) δ(Cu~(+2)-CuFeS_2)=3.1‰% at 25°°C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu_2O) would yield further enrichment of dissolved ~(65)Cu since ~(65-63)δ(Cu~(+2)-Cu_2O) is 1.2‰% at 25°°C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰% making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰%) fractionations between dissolved Cu~(+2)(or Cu~(+2) minerals) and primary Cu~+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ~(65)Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.
机译:铜以两种同位素形式存在:〜(65)Cu(〜30.85%)和〜(63)Cu(〜69.15%)。次生矿物质,地表水和含氧地下水中铜的同位素组成比初级硫化物中的铜同位素组成重1-12‰%。氧化态和络合物的变化应在铜物质之间产生大量的同位素分馏,但尚不清楚观察到的铜同位素变化在多大程度上反映了平衡分馏。在这里,我使用周期性和分子杂化密度泛函理论预测平衡同位素,计算出黄铜矿(CuFeS_2),铜矿(Cu_2O),锰铁矿(CuO)和含水Cu〜+,Cu〜(+2)配合物的减少的配分比。由Cu〜+氧化成Cu〜(+2)以及溶解的Cu的络合导致的Cu的分馏。在水性环境中的各种铜(II)配合物中,降低的分配功能比存在很大的范围(1.3‰%)。黄铜矿(CuFeS_2)氧化并完全溶解为溶解的Cu〜(+2)(当Cu(H_2O)_5〜(+2))产生的〜(65-63)δ(Cu〜(+2)-CuFeS_2)= 3.1 25°C时‰%;但是,黄铜矿的氧化/溶解是不相容的,因此观察到的同位素分馏将更少。铜铁矿(Cu_2O)的二次沉淀会进一步溶解〜(65)Cu,因为〜(65-63)δ(Cu〜(+2)-Cu_2O)在25°C下为1.2‰%。但是,辉长岩(CuO)的沉淀将有利于较重的同位素+ 1.0‰%,从而使同位素溶解的Cu变轻。这些是平衡分馏的上限估计。因此,在超基因环境中观察到的溶解的Cu〜(+2)(或Cu〜(+2)矿物)与原生Cu〜+硫化物之间的巨大分离(9‰%)必须反映瑞利(开放系统)或动力学分离。最后,先前提出的(Asael等人,2009)利用黄铜矿中的δ〜(65)Cu来估算在层状沉积物承载的铜矿床中输送Cu的流体的氧化态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号