...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Atomic structure and dehydration mechanism of amorphous silica: Insights from ~(29)Si and 1H solid-state MAS NMR study of SiO_2 nanoparticles
【24h】

Atomic structure and dehydration mechanism of amorphous silica: Insights from ~(29)Si and 1H solid-state MAS NMR study of SiO_2 nanoparticles

机译:非晶态二氧化硅的原子结构和脱水机理:〜(29)Si和1H固态MAS NMR研究SiO_2纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Detailed knowledge of the atomic structure of hydrous species on surface of amorphous silica and the effect of temperature and particle size on their atomic configurations are essential to understand the nature of fluids-amorphous silicates interactions and the dehydration processes in the amorphous oxides. Here, we report the ~(29)Si, 1H MAS, and ~1H-~(29)Si heteronuclear correlation (HetCor) NMR spectra of 7nm and 14nm amorphous silica nanoparticles-a model system for natural amorphous silica-where previously unknown details of changes in their atomic structures with varying dehydration temperature and particle size are revealed. Diverse hydroxyl groups with varying atomic configurations and molecular water apparently show distinct dehydration trends. The dehydration (i.e., removal of water) of amorphous silica nanoparticles mostly results in the increase of isolated silanol by removing water molecules from hydrogen-bonded silanols associated water molecules. With further increase in dehydration temperature, the intensity of isolated silanol peak decreases above ~873K, suggesting that the condensation of isolated silanol may occur mainly above ~873K. The entire dehydration (and dehydroxylation) process completes at ~1473K. Both the water (i.e., physisorbed water and hydrogen-bonded water) and hydrogen-bonded silanol species show a dramatic change in the slope of intensity variation at ~873K, indicating that most of silanols is hydrogen-bonded to water rather than to other silanols. The fraction of hydrogen-bonded proton species is also much smaller in 14nm amorphous silica nanoparticles than in 7nm amorphous silica nanoparticles mainly due to the presences of larger fractions of water and hydrogen-bonded silanol species. ~(29)Si NMR results show that with increasing dehydration temperature, the fraction of Q~4 species apparently increases at the expense of Q~2 and Q~3 species. The fractions of Q~2 and Q~3 structures in 7nm amorphous silica nanoparticles are larger than those in 14nm amorphous silica nanoparticles. Dehydration of 7nm amorphous silica nanoparticles occurs at a lower temperature than that of 14nm amorphous silica nanoparticles. ~(29)Si MAS NMR results show that a possible simultaneous dehydroxylation can also occur with removal of the hydrogen bonded silanol in the 7nm silica nanoparticles. The energy penalty of dehydroxylation estimated from 29Si MAS NMR spectra varies with Q species and is smaller in 7nm than in 14nm amorphous silica nanoparticles. These results demonstrate that the particle size of nanoparticles plays an important role in controlling the hydrogen contents, and thus overall hydrogen bond strength of hydroxyl groups and atomic structure of silanols can control dehydroxylation of amorphous silica nanoparticles. The structural information and mechanistic details obtained from the current study provide insights into the structure of hydrous species and dehydration mechanisms in crystalline and amorphous silicates in diverse geological settings, highlighting usually unknown effects of particle size on the dehydration processes.
机译:详细了解非晶态二氧化硅表面上水合物种的原子结构以及温度和粒径对其原子构型的影响,对于理解流体与非晶态硅酸盐的相互作用以及非晶态氧化物的脱水过程至关重要。在这里,我们报告了7nm和14nm无定形二氧化硅纳米粒子的〜(29)Si,1H MAS和〜1H-〜(29)Si异核相关(HetCor)NMR光谱-天然无定形二氧化硅的模型系统-以前未知的细节揭示了随着脱水温度和粒径的变化,其原子结构的变化。具有不同原子构型和分子水的不同羟基显然表现出明显的脱水趋势。通过从与氢键合的硅烷醇缔合的水分子中除去水分子,无定形二氧化硅纳米粒子的脱水(即,除水)主要导致分离的硅烷醇的增加。随着脱水温度的进一步升高,分离出的硅烷醇峰的强度在〜873K以上降低,这表明分离出的硅烷醇的缩合主要发生在〜873K以上。整个脱水(和脱羟基)过程在〜1473K时完成。水(即,物理吸附的水和氢键合的水)和氢键合的硅烷醇物种在〜873K处的强度变化斜率都显示出显着变化,这表明大多数硅烷醇是氢键合于水而非其他硅烷醇。氢键合质子物质的比例在14nm无定形二氧化硅纳米粒子中也比7nm无定形二氧化硅纳米粒子小得多,这主要是由于存在较大比例的水和氢键合硅烷醇物质。 〜(29)Si NMR结果表明,随着脱水温度的升高,Q〜4种类的比例明显增加,但以Q〜2和Q〜3种类为代价。 7nm无定形二氧化硅纳米粒子中Q〜2和Q〜3结构的分数大于14nm无定形二氧化硅纳米粒子中的Q〜2和Q〜3结构分数。 7nm无定形二氧化硅纳米颗粒的脱水发生在比14nm无定形二氧化硅纳米颗粒更低的温度下。 〜(29)Si MAS NMR结果表明,在7nm二氧化硅纳米颗粒中,除去氢键合的硅烷醇后,也可能同时发生脱羟基反应。根据29Si MAS NMR光谱估计的脱羟基能量损失随Q物种而变化,并且在7nm中比在14nm无定形二氧化硅纳米颗粒中小。这些结果表明,纳米粒子的粒径在控制氢含量中起着重要作用,因此羟基的整体氢键强度和硅烷醇的原子结构可以控制无定形二氧化硅纳米粒子的脱羟基。从当前研究中获得的结构信息和机械细节提供了对不同地质环境中结晶和无定形硅酸盐中水合物种的结构和脱水机理的见解,突出了粒度通常对脱水过程的未知影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号