首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >XPS study of reductive dissolution of 7A-birnessite by H_3AsO_3, with constraints on reaction mechanism
【24h】

XPS study of reductive dissolution of 7A-birnessite by H_3AsO_3, with constraints on reaction mechanism

机译:XPS研究H_3AsO_3还原7A-水钠锰矿的溶解性,并限制了反应机理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Reductive dissolution of synthetic birnessite (MnO_(1.7)(OH)_(0.25) or MnO_(1.95)) by arsenious acid (H_3AsO_3) proceeds in two steps. The first entails reduction of Mn(IV) to Mn(III), with stoichiometry: 2MnO_2 + H_3AsO_3 = 2MnOOH~* + H_3AsO_4 H_3AsO_3 then attacks MnOOH~* according to the stoichiometric reaction: 2MnOOH~* + H_3AsO_3 = 2MnO + H_3AsO_4 + H_2O, where MnOOH~* is an intermediate reaction product. Mn(II) is released ultimately to solution. Most importantly, one electron is transferred to each metal ion per reaction step. A Mn(III) component of the original, synthetic birnessite also undergoes reductive dissolution independently of, and at a different rate than, reduction of MnOOH~*. X-ray Photoelectron Spectroscopy (XPS) demonstrates formation of an intermediate reaction product composed of Mn(III), hydroxyl, and H_2O (here represented as MnOOH~*) MnOOH~* increases to a maximum value and subsequently decreases, as expected of an intermediate reaction product of a consecutive reaction scheme. Seven reactions are required to represent adequately reductive dissolution of birnessite. These include redox and sorption reactions. A Monte Carlo simulation successfully reproduces the major features of both XPS and previously published leach-rate results. Reductive dissolution of birnessite may proceed either via a classic electron transfer mechanism by which a bidentate surface complex forms, or via a substitution reaction mechanism, by which a monodentate surface complex forms. X-ray absorption spectroscopic (XAS) studies may be used to identify the appropriate mechanism.
机译:砷酸(H_3AsO_3)对合成水钠锰矿(MnO_(1.7)(OH)_(0.25)或MnO_(1.95)的还原溶解过程分为两个步骤。首先需要将Mn(IV)还原为Mn(III),化学计量为:2MnO_2 + H_3AsO_3 = 2MnOOH〜* + H_3AsO_4 H_3AsO_3然后根据化学计量反应攻击MnOOH〜*:2MnOOH〜* + H_3AsO_3 = 2MnO + H ,其中MnOOH〜*是中间反应产物。 Mn(II)最终释放到溶液中。最重要的是,每个反应步骤将一个电子转移到每个金属离子上。原始合成水钠锰矿的Mn(III)组分也经历还原溶解,其还原速率与MnOOH〜*的还原速率无关。 X射线光电子能谱(XPS)证明形成了由Mn(III),羟基和H_2O组成的中间反应产物(此处表示为MnOOH〜*)。连续反应方案的中间反应产物。需要七个反应来代表水钠锰矿的充分还原溶解。这些包括氧化还原和吸附反应。蒙特卡洛模拟成功地再现了XPS和先前发布的浸出率结果的主要特征。水钠锰矿的还原溶解可以通过经典的电子传递机理(通过该机理形成二齿表面配合物)或通过取代反应机理(通过其形成单齿表面配合物)进行。 X射线吸收光谱(XAS)研究可用于确定适当的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号