...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Controls on Fe reduction and mineral formation by a subsurface bacterium
【24h】

Controls on Fe reduction and mineral formation by a subsurface bacterium

机译:控制地下细菌还原铁和形成矿物质

获取原文
获取原文并翻译 | 示例

摘要

The reductive dissolution of FeIII (hydr)oxides by dissimilatory iron-reducing bacteria (DIRB) could have a large impact on sediment genesis and Fe transport. If DIRB are able to reduce FeIII in minerals of high structural order to carry out anaerobic respiration, their range could encompass virtually every O-2-free environment containing FeIII and adequate conditions for cell growth. Previous studies have established that Shewanella putrefaciens CN32, a known DIRB, will reduce crystalline Fe oxides when initially grown at high densities in a nutrient-rich broth, conditions that poorly model the environments where CN32 is found. By contrast, we grew CN32 by batch culture solely in a minimal growth medium. The stringent conditions imposed by the growth method better represent the conditions that cells are likely to encounter in their natural habitat. Furthermore, the expression of reductases necessary to carry out dissimilatory Fe reduction depends on the method of growth. It was found that under anaerobic conditions CN32 reduced hydrous ferric oxide (HFO), a poorly crystalline FeIII mineral, and did not reduce suspensions containing 4 mM FeIII in the form of poorly ordered nanometer-sized goethite (alpha-FeOOH), well-ordered micron-sized goethite, or nanometer-sized hematite (alpha-Fe2O3) crystallites. Transmission electron microscopy (TEM) showed that all minerals but the micron-sized goethite attached extensively to the bacteria and appeared to penetrate the outer cellular membrane. In the treatment with HFO, new FeII and FeIII minerals formed during reduction of HFO-Fe in culture medium containing 4.0 mmol/L P-i (soluble inorganic P), as observed by TEM with energy-dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The minerals included magnetite (Fe3O4), goethite, green rust, and vivianite [Fe-3(PO4)(2) . 8H(2)O]. Vivianite appeared to be the stable end product and the mean coherence length was influenced by the rate of FeIII reduction. When P-i was 0.4 mol/L under otherwise identical conditions, goethite was the only mineral observed to form, and less Fe2+ was produced overall. Hence, the ability of DIRB to reduce Fe (hydr)oxides may be limited when the bacteria are grown under nutrient-limited conditions, and the minerals that result depend on the vigor of FeIII reduction. Copyright (C) 2003 Elsevier Science Ltd. [References: 79]
机译:异化还原铁细菌(DIRB)对FeIII(氢)氧化物的还原溶解可能会对沉积物的成因和Fe的运输产生重大影响。如果DIRB能够还原具有高度结构性的矿物质中的FeIII以进行厌氧呼吸,则其范围几乎涵盖了所有含FeIII的无O-2-的环境以及细胞生长的适当条件。先前的研究已经确定,Shewanella putrefaciens CN32(一种已知的DIRB)最初在富含营养的肉汤中以高密度生长时,会还原结晶的Fe氧化物,这种条件很难模拟发现CN32的环境。相反,我们仅在最小的生长培养基中通过分批培养来生长CN32。生长方法施加的严格条件更好地代表了细胞在其自然栖息地中可能遇到的条件。此外,进行异化Fe还原所必需的还原酶的表达取决于生长方法。结果发现,在厌氧条件下,CN32还原了结晶度较差的FeIII矿物水合氧化铁(HFO),并且未还原秩序井然的纳米级针铁矿(α-FeO​​OH)形式的含有4 mM FeIII的悬浮液。微米级针铁矿或纳米级赤铁矿(α-Fe2O3)晶体。透射电子显微镜(TEM)显示,除微米级针铁矿外,所有矿物质都广泛附着在细菌上,并似乎穿透了细胞外膜。用HFO处理时,在含有4.0 mmol / L Pi(可溶性无机P)的培养基中HFO-Fe还原过程中会形成新的FeII和FeIII矿物,这是通过TEM和能量色散X射线光谱法观察到的,选择区域电子衍射和X射线衍射。矿物包括磁铁矿(Fe3O4),针铁矿,绿锈和堇青石[Fe-3(PO4)(2)。 8H(2)O]。 Vivianite似乎是稳定的最终产品,平均相干长度受FeIII还原速率的影响。当在其他条件相同的情况下P-i为0.4 mol / L时,针铁矿是观察到形成的唯一矿物,并且总体上生成的Fe2 +更少。因此,当细菌在营养受限的条件下生长时,DIRB还原Fe(氢)氧化物的能力可能会受到限制,并且产生的矿物质取决于FeIII还原的活力。版权所有(C)2003 Elsevier Science Ltd. [参考:79]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号