...
【24h】

Uranium co-precipitation with iron oxide minerals

机译:铀与氧化铁矿物的共沉淀

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [alpha-Fe2O3] and goethite [alpha-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria. To examine the dynamics, of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means Of Solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving. on average. about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about I mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (similar to4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO22+ species (such as the IR asymmetric nu(3) stretch for O = U = O for uranyl). These spectral features were undetectable in carbonate- or oxalate-leached solids, suggesting solid phase and sorbed U(VI)O-2(2+) species are extracted by the leach solutions. Uranium L-3-edge x-ray absorption spectroscopic (XAFS) analyses of the unleached U-Fe oxide solids with less than 1 mol% U reveal that U(VI) exists with four O atoms at radial distances of 2.19 and 2.36 Angstrom and second shell Fe at a radial distance at 3.19 Angstrom. Because of the large ionic radius of UO22+ (similar to1.8 Angstrom) relative to that of Fe3+ (0.65 Angstrom), the UO22+ ion is unlikely to be incorporated in the place of Fe in Fe(Ill)-oxide structures. Solid-phase U(VI) can exist as the uranyl [U(VI)O-2(2+)] species with two axial U-O double bonds and four or more equatorial U-O bonds or as the uranate species (such as gamma-UO3) without axial U-O bonds. Our findings indicate U6+ (with ionic radii of 0.72 to 0.8 Angstrom, depending on the coordination environment) is incorporated in the Fe oxides as uranate (without axial O atoms) until a point of saturation is reached. Beyond this excess in U concentration, precipitating U(VI) forms discrete crystalline uranyl phases that resemble the uranyl oxide hydrate schoepite [UO2(OH)(2).2H(2)O]. Molecular modeling studies reveal that U6+ species could bond with O atoms from distorted Fe octahedra in the hematite structure with an environment that is consistent with the results of the XAFS. The results provide compelling evidence of U incorporation within the hematite structure. Copyright (C) 2002 Elsevier Science Ltd. [References: 87]
机译:在氧化环境中,有毒和放射性元素铀(U)在六价氧化态下最易溶且可移动。 U(VI)在铁氧化物矿物质(例如赤铁矿[α-Fe2O3]和针铁矿[α-FeO​​OH])上的吸附以及铁(Fe)氧化物涂层对U(VI)的吸附是阻碍U在环境中运输的过程。在受铀污染的老化地质材料中,与铁氧化物矿物共沉淀可能会限制铀向还原态的迁移和生物利用度。这些过程还影响U(VI)物种通过还原金属细菌作为难溶性U(IV)物种而减少和沉淀的生物学可用性。为了检查动力学,结晶过程中U(VI)和Fe氧化物之间的相互作用,通过U(VI)和Fe的溶液合成了Fe-氧化物相(含0.5至5.4 mol%U /(U + Fe))。 (III)。湿化学法(消化法和化学提取法)和光谱技术用于表征在去离子水中冲洗后合成的Fe氧化物共沉淀物。用浓碳酸盐溶液(用于吸附和固相U(VI)物质)浸出高摩尔%U固体通常会除去大部分U,而留下。一般。 U含量低(%I mol%或更少)的固体的草酸盐浸出表明,这些固体中几乎所有的Fe都是结晶的,并且大多数U与这些结晶的Fe氧化物有关。 X射线衍射和傅立叶变换红外(FT-IR)光谱研究表明,当Fe氧化物中的U含量超过1 mol%U(类似于4 wt%U)时,赤铁矿的形成优于针铁矿的形成。使用未浸出U / Fe固体的FT-IR和室温连续波发光光谱研究表明,Fe氧化物中的mol%U与可分配给UO22 +物种(例如IR)的光谱特征的强度或存在之间的关系O = U = O =铀酰的不对称nu(3)拉伸)。这些光谱特征在碳酸盐或草酸盐浸出的固体中无法检测到,表明固相和吸附的U(VI)O-2(2+)物种被浸出溶液萃取。铀的L-3-边缘x射线吸收光谱法(XAFS)对U含量小于1 mol%的未浸出U-Fe氧化物固体的分析表明,U(VI)存在四个O原子,径向距离为2.19和2.36埃,第二壳铁的径向距离为3.19埃。由于相对于Fe3 +(0.65埃)而言,UO22 +的离子半径较大(约1.8埃),因此UO22 +离子不太可能在Fe(III)-氧化物结构中取代Fe。固相U(VI)可以作为具有两个轴向UO双键和四个或更多个赤道UO键的铀酰[U(VI)O-2(2+)]物种存在,也可以作为尿酸盐物种(例如γ-UO3)存在)而没有轴向UO键。我们的发现表明,U6 +(离子半径为0.72至0.8埃,取决于配位环境)以铀酸盐(无轴向O原子)的形式掺入Fe氧化物中,直至达到饱和点。超过此过量的U浓度,沉淀的U(VI)会形成离散的铀酰基相,类似于铀酰氧化物水合闪锌矿[UO2(OH)(2).2H(2)O]。分子模型研究表明,在与XAFS结果一致的环境下,U6 +物种可以与赤铁矿结构中扭曲的八面体Fe八面体的O原子键合。该结果提供了令人信服的证据,证明U掺入赤铁矿结构中。版权所有(C)2002 Elsevier Science Ltd. [参考:87]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号