首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >EXPERIMENTAL CONSTRAINTS ON MELTING CONDITIONS RELEVANT TO CORE FORMATION
【24h】

EXPERIMENTAL CONSTRAINTS ON MELTING CONDITIONS RELEVANT TO CORE FORMATION

机译:与核心形成有关的熔化条件的实验约束

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Our recent melting experiments on the major mantle and core materials at high pressure have shown that the very high melting temperatures in the lower mantle preclude models of deep magma oceans in the lower mantle unless the Earth was heated substantially by giant impacts. The melting temperatures of the Fe-O-S system are slightly above and nearly parallel to the present-day geotherm in the lower mantle. Thus, at the time of core formation, temperatures in the lower mantle most likely exceeded not only the Fe-O-S solidus but also the melting temperatures of endmembers in this system, thus providing simple conditions for metal segregation. Eutectic lowering of the melting temperatures is not required. There is evidence that the previously observed chemical reactions between Mg-Si-perovskite and liquid iron were at least partly due to the presence of moisture in the samples, because under dry conditions such reactions could not be observed visually, in stark contrast to undried conditions. Reaction zones of yet unknown nature between iron and MgO, however, are clearly visible even after moderate heating. The core-mantle boundary and D '' region most likely reflect a combination of large thermal and chemical gradients. Thermal discontinuities are inferred from both observed radial and lateral velocity gradients and new experimental results: sound velocity measurements at mantle pressures show an increase in dln/dlnv with pressure, which when combined with the strong decrease in the thermal expansion coefficient with pressure imply large lateral temperature variations near the base of the lower mantle. Indeed, the melting relationship measurements of iron and iron-oxygen-sulfur compounds measured at pressures up to 2 Mbar imply a temperature discontinuity across the core-mantle boundary in excess of 1300 K. Melting temperatures of Mg,Fe,Si-perovskite and magnesiowustite are estimated to lie above 7000 and 5000 K, respectively, thus allowing large temperature variations at the bottom of the mantle without large scale melting and normal viscosity-rheology. [References: 30]
机译:我们最近在高压下对主要地幔和核心材料的融化实验表明,除非地表受到巨大的撞击而使地球加热,否则下地幔中很高的融化温度将排除下地幔中深部岩浆海洋的模型。 Fe-O-S系统的熔融温度略高于并几乎平行于下地幔中的当今地热。因此,在岩心形成时,下地幔中的温度很可能不仅会超过Fe-O-S固相线,而且还会超过该系统中末端构件的熔化温度,从而为金属的偏析提供了简单的条件。不需要熔融温度的共晶降低。有证据表明,以前观察到的Mg-Si-钙钛矿和铁水之间的化学反应至少部分是由于样品中存在水分,因为在干燥条件下无法肉眼观察到这种反应,这与未干燥条件形成了鲜明的对比。 。但是,即使经过适度加热,铁和MgO之间的性质未知的反应区仍然清晰可见。芯幔边界和D''区域很可能反映了大的热梯度和化学梯度。从观察到的径向和横向速度梯度以及新的实验结果都可以推断出热不连续性:在地幔压力下的声速测量结果显示,随着压力的增加,dln / dlnv增大,而当压力增大时,热膨胀系数急剧下降,则意味着横向压力增大下地幔底部附近的温度变化。实际上,在高达2 Mbar的压力下测量的铁和铁-氧-硫化合物的熔融关系测量结果表明,整个芯-幔边界的温度不连续性超过1300K。Mg,Fe,Si-钙钛矿和菱镁矿的熔融温度据估计,它们分别位于7000 K和5000 K以上,因此允许在地幔底部发生较大的温度变化,而无需大规模熔化和正常的粘度流变。 [参考:30]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号