首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt
【24h】

Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt

机译:Nb和Ta在金红石和长质熔体之间的分配以及在含水偏玄武岩部分熔融过程中Nb / Ta的分馏

获取原文
获取原文并翻译 | 示例
           

摘要

In order to fully assess the role of rutile in fractionation of Nb/Ta during partial melting of hydrous metabasalt, we have measured rutile - felsic melt partition coefficients (D values) for Nb and Ta with tonalitic to trondhjemitic compositions at 1.5-3.5GPa, 900-1350°C and ~5.0-20wt% H_2O. D_(Nb), D_(Ta) and D_(Nb)/D_(Ta) range from 17±1 to 246±13, 34±2 to 232±25 and 0.51±0.04 to 1.06±0.13, respectively. For the compositions investigated, melt composition appears to have no observable effect on the partitioning; the effect of pressure is also slight; whereas temperature and H_2O have marked effects. D_(Nb), D_(Ta) and D_(Nb)/D_(Ta) increase with decreasing temperature and H_2O content, showing a reversal of D_(Nb)/D_(Ta) from <1.0 to >1.0. Using the data that approached equilibrium and obeyed Henry's law, expressions describing the dependences of D_(Nb), D_(Ta) and D_(Nb)/D_(Ta) on temperature, pressure and melt H_2O content were obtained: (1)ln(D_(Nb))rutile/melt=-2.846(±0.453)+9621(±470)/T+0.207(±0.101)P-0.042(±0.009)H_2O (2)ln(D_(Ta))rutile/melt=-0.775(±0.398)+6954(±413)/T+0.140(±0.089)P-0.009(±0.007)H_2O (3)ln(D_(Nb)/D_(Ta))rutile/melt=-2.075(±0.289)+2657(±301)/T+0.075(±0.065)P-0.033(±0.006)H_2O where T is in K, P is in GPa, and H_2O are in wt%. These expressions are applicable to calculate Nb and Ta partitioning coefficients between rutile and felsic (highly siliceous) melts and Nb/Ta fractionation during partial melting of metabasalt. The derived models suggest that fluid-present partial melting of metabasalt always leads to D_(Nb)/D_(Ta) lower than 1.0, whereas dehydration melting may lead to D_(Nb)/D_(Ta) higher than 1.0 at temperatures <1000°C and melt H_2O contents <10wt%. Low-degree melting cannot substantially change the Nb/Ta ratio of rutile-bearing eclogite residues relative to their basalt precursors, whereas high-degree melting leads to lower Nb/Ta ratios in the residues. These results thus confirm that partial melting of hydrous metabasalt cannot produce rutile-bearing eclogites with superchondritic Nb/Ta. Fractionation of Nb/Ta for the melts relative to their basalt precursors can occur during low-degree melting due to the high D_(Nb) and D_(Ta) and variable D_(Nb)/D_(Ta). The fractionation direction depends on melting degree (temperature) and protolith initial H_2O content (assuming that hydrous phases are consumed entirely during partial melting), whereas the fractionation extent depends on protolith initial H_2O and TiO_2 contents. Fluid-present melting at <20wt% melt fractions will significantly elevate melt Nb/Ta ratio, whereas dehydration melting with low initial H_2O (<1.2wt%) may reduce melt Nb/Ta ratio. In general, rutile in eclogite residues accounts for the highly variable Nb/Ta ratios in the Archean TTG magmas. In particular, the very high Nb/Ta ratios of some TTG magmas may only be explained by low-degree (<20wt%) melting in the presence of both rutile and a hydrous fluid.
机译:为了充分评估金红石在含水偏玄武岩部分熔融过程中Nb / Ta分离中的作用,我们测量了Nb和Ta的金红石-长素体熔体分配系数(D值),以及在1.5-3.5GPa的tonalitic至trondhjemitic成分, 900-1350°C和〜5.0-20wt%H_2O。 D_(Nb),D_(Ta)和D_(Nb)/ D_(Ta)的范围分别为17±1至246±13、34±2至232±25和0.51±0.04至1.06±0.13。对于所研究的组合物,熔体组合物似乎对分配没有观察到的影响。压力的影响也很小;而温度和H_2O具有明显的影响。 D_(Nb),D_(Ta)和D_(Nb)/ D_(Ta)随着温度和H_2O含量的降低而增加,显示D_(Nb)/ D_(Ta)从<1.0变为> 1.0。使用接近平衡并遵守亨利定律的数据,获得了描述D_(Nb),D_(Ta)和D_(Nb)/ D_(Ta)对温度,压力和熔体H_2O含量的依赖性的表达式:(1)ln (D_(Nb))金红石/熔体= -2.846(±0.453)+9621(±470)/T+0.207(±0.101)P-0.042(±0.009)H_2O(2)ln(D_(Ta))金红石/熔体= -0.775(±0.398)+6954(±413)/T+0.140(±0.089)P-0.009(±0.007)H_2O(3)ln(D_(Nb)/ D_(Ta))金红石/熔体=- 2.075(±0.289)+2657(±301)/T+0.075(±0.065)P-0.033(±0.006)H_2O,其中T为K,P为GPa,H_2O为wt%。这些表达式适用于计算偏玄武岩部分熔融过程中金红石和长英质(高硅质)熔体之间的Nb和Ta分配系数以及Nb / Ta分馏。推导模型表明,玄武岩的流体存在部分熔融总是导致D_(Nb)/ D_(Ta)低于1.0,而脱水熔融可能导致D_(Nb)/ D_(Ta)在<1000温度下高于1.0且熔体中H_2O含量<10wt%。相对于玄武岩前体,低度熔融基本上不能改变含金红石的榴辉岩残留物的Nb / Ta比,而高熔融度则导致残留物中较低的Nb / Ta比。因此,这些结果证实含水偏玄武岩的部分熔融不能产生具有超细晶态的Nb / Ta的金红石型榴辉岩。由于高的D_(Nb)和D_(Ta)以及可变的D_(Nb)/ D_(Ta),在低度熔融过程中会发生熔体相对于玄武岩前体的Nb / Ta分馏。分馏方向取决于熔融度(温度)和原石初始H_2O含量(假设在部分熔融过程中水相全部被消耗),而分馏程度取决于原石初始H_2O和TiO_2含量。在小于20wt%的熔体含量下存在的流体熔融会显着提高熔体的Nb / Ta比,而初始H_2O低(<1.2wt%)的脱水熔体可能会降低熔体的Nb / Ta比。通常,榴辉岩残留物中的金红石占太古代TTG岩浆中Nb / Ta比的高度可变。特别地,某些TTG岩浆的非常高的Nb / Ta比只能用金红石和含水流体同时存在的低度(<20wt%)熔融来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号