...
首页> 外文期刊>Geochimica et Cosmochimica Acta: Journal of the Geochemical Society and the Meteoritical Society >THE ROLE OF ILMENITE IN THE SOURCE REGION FOR MARE BASALTS - EVIDENCE FROM NIOBIUM, ZIRCONIUM, AND CERIUM IN PICRITIC GLASSES
【24h】

THE ROLE OF ILMENITE IN THE SOURCE REGION FOR MARE BASALTS - EVIDENCE FROM NIOBIUM, ZIRCONIUM, AND CERIUM IN PICRITIC GLASSES

机译:钛铁矿在母马玄武岩来源区域中的作用-镜玻璃中铌,锆和铈的证据

获取原文
获取原文并翻译 | 示例

摘要

To investigate models for the generation of lunar high Ti-basalts, we have analyzed lunar picritic glasses for Zr, Nb, Ce, and Ti at high precision using ion microprobe techniques. The picritic magmas represented by these glasses have experienced minor crystallization, which has allowed us to partially eliminate the effects of post-melting processes commonly experienced by crystalline high-Ti mare basalts. The Nb/Zr for these glasses ranges from .05-.11. The high-Ti glasses generally tend to have higher values of Nb/Zr (.072-.109) than the very low-Ti glasses (.048-.085). The crystalline mare basalts tend to have slightly higher Nb/Zr than glasses with similar Ti from the same site. For example, the Apollo 17 (A17) high-Ti basalts have Nb/Zr of approximately .09. whereas, the A17 high-Ti glasses have Nb/Zr of .07. KREEP has Nb/Zr of approximately .06. Thus, Zr is fractionated from Nb to different degrees in the various picritic magmas. The concentrations of Zr, Nb, and Ce increase from the very low-Ti glasses to the high-Ti glasses, and along that trajectory the Nb/Ce and Zr/Ce increase. Nb/Ce (.25-1.6) and Zr/Ce (4-15) for the picritic glasses overlap with KREEP (Nb/Ce = .36 and Zr/Ce = 5). Zr/Ti and Nb/Ti show a wide range of variation in these glasses. Both Zr/Ti and Nb/Ti in the glasses range from approximately .0014 to slightly less than .0003. The Zr/Ti and Nb/Ti for these glasses overlap with that of the crystalline mare basalts. Generally, with increasing Ti, Nb, and Zr, Zr/Ti and Nb/Ti decrease. The exceptions to this are the Apollo 14 (A14) glasses that exhibit an increase in Nb/Ti and Zr/Ti. Based on these data for the picritic glasses and experimentally determined partition coefficients for Nb, Zr, and Ce, the mantle sources for these picritic magmas are slightly to moderately fractionated from Cl chondrite and previous estimates of the bulk silicate Moon. Our best fit model for our data and this observation is that both the very low-Ti and high-Ti picritic magmas were derived through small to moderate degrees of nonmodal melting of lunar mantle sources consisting of a mixture of late-stage LMO cumulates (derived after >95% crystallization of the LMO) and early to intermediate LMO cumulates (derived prior to 80% crystallization of the LMO). The early LMO cumulates had Nb/Zr, Zr/Ce, and Nb/Ce ratios near Cl chondrite, whereas these ratios were fractionated in the late-stage LMO cumulates. This hybridization of mantle sources occurred during large scale overturning of the LMO cumulate pile. The source for the low-Ti picritic magmas had very minor amounts of ilmenite, whereas the source for the high-Ti picritic magmas probably contained less than 6% ilmenite. For all the picritic magmas, ilmenite was exhausted from the residua during melting. Models suggesting that the high-Ti magmas are derived through the assimilation of an ilmenite-bearing cumulate layer or preferential assimilation of ilmenite by low-Ti primary magmas are not consistent with the Nb, Zr, Ce, and Ti data magmas (Hubbard and Minear, 1975; Wagner and Grove, 1993, 1995). In particular, the preferential assimilation by very low-Ti picritic magmas of ilmenite with expected Nb/Ce (20,000-22,000) and Nb/Zr (55) signatures would displace the resulting high-Ti magma too far from our observed data. Large scale overturning of the LMO cumulate pile also accounts for the trace element signatures found in the A14 picritic glasses. The evolved signature found in these primitive very low-Ti picritic glasses is most likely a product of KREEP incorporation into the LMO cumulate source rather than either contamination by evolved ilmenite-bearing cumulates or incorporation of higher proportions of locally derived intercumulus melt. [References: 41]
机译:为了研究生成月球高钛玄武岩的模型,我们使用离子微探针技术以高精度分析了Zr,Nb,Ce和Ti的月球微晶玻璃。这些玻璃代表的苦味岩浆经历了较小的结晶,这使我们能够部分消除结晶高钛母马玄武岩通常经历的后熔化过程的影响。这些玻璃的Nb / Zr范围为.05-.11。高钛玻璃通常比低钛玻璃(.048-.085)具有更高的Nb / Zr值(.072-.109)。结晶母马玄武岩的Nb / Zr往往比来自相同位置的类似Ti的玻璃略高。例如,阿波罗17号(A17)高钛玄武岩的Nb / Zr约为.09。而A17高钛玻璃的Nb / Zr为.07。 KREEP的Nb / Zr约为.06。因此,在各种野餐岩浆中,Zr从Nb分级到不同程度。 Zr,Nb和Ce的浓度从非常低的Ti玻璃增加到高Ti的玻璃,并且沿着该轨迹,Nb / Ce和Zr / Ce增大。野餐玻璃的Nb / Ce(.25-1.6)和Zr / Ce(4-15)与KREEP重叠(Nb / Ce = 0.36和Zr / Ce = 5)。 Zr / Ti和Nb / Ti在这些玻璃中显示出很大的变化范围。玻璃中的Zr / Ti和Nb / Ti都在大约.0014到略小于.0003的范围内。这些玻璃的Zr / Ti和Nb / Ti与结晶母马玄武岩的Zr / Ti和Nb / Ti重叠。通常,随着Ti,Nb和Zr的增加,Zr / Ti和Nb / Ti降低。例外情况是Apollo 14(A14)玻璃的Nb / Ti和Zr / Ti有所增加。根据这些野性玻璃的数据以及实验确定的Nb,Zr和Ce的分配系数,这些野性岩浆的地幔来源是从Cl球粒陨石和先前的硅酸盐大块月球估算中略微或中等地分离出来的。我们最适合我们的数据的模型和该观察结果是,低钛和高钛的郊外岩浆都是通过月球幔源的小到中等程度的非模态融化而获得的,后者由后期LMO累积的混合物组成(源自在LMO的> 95%结晶后)和从早到中的LMO累积(源自LMO的80%结晶之前)。早期的LMO累积物在Cl球粒陨石附近具有Nb / Zr,Zr / Ce和Nb / Ce的比率,而这些比率在后期的LMO累积物中被分馏。地幔源的这种混合发生在LMO堆积桩的大规模倾覆过程中。低钛盐岩岩浆的来源中钛铁矿的量很少,而高钛盐岩岩浆的来源中钛铁矿的含量可能不到6%。对于所有的野餐岩浆,钛铁矿在熔化过程中都从残渣中耗尽。表明高钛岩浆是通过含钛铁矿的累积层的同化或低钛原生岩浆对钛铁矿的优先同化而得出的模型与Nb,Zr,Ce和Ti数据岩浆不一致(Hubbard和Minear ,1975;瓦格纳和格罗夫,1993,1995)。特别是,具有预期Nb / Ce(20,000-22,000)和Nb / Zr(55)签名的钛铁矿的极低Ti苦杏仁岩浆优先吸收,将会使所得的高Ti岩浆与我们的观测数据相距太远。 LMO堆积物的大范围倾覆也说明了A14野餐杯中的微量元素特征。在这些原始的极低Ti钝态玻璃中发现的演变特征很可能是KREEP掺入改性活生物体累积源的产物,而不是由演化的含钛铁矿的累积物污染或掺入较高比例的局部衍生的积云间熔体。 [参考:41]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号