...
【24h】

CS-133 NMR STUDY OF CESIUM ON THE SURFACES OF KAOLINITE AND ILLITE

机译:铯在高岭石和伊利石表面上的CS-133 NMR研究

获取原文
获取原文并翻译 | 示例

摘要

Cs-133 MAS NMR of Cs-exchanged illite, kaolinite, boehmite, and silica gel is shown to be a powerful tool to investigate the adsorption sites and atomic dynamics of Cs on mineral surfaces. Cesium is adsorbed on these mineral surfaces in primarily two ways: at sites relatively tightly bonded to the surface (Stern layer, Cs1) and at more loosely bonded sites in the diffuse (Gouy) layer (Cs2). For illite, both edge sites and crystallite basal surfaces are important adsorption sites. For kaolinite, edge sites, expandable layers, and probably crystallite basal surfaces are important. The Cs-133 NMR chemical shifts for the Cs1 site become more shielded (more negative) as the Si/Al ratio of the substrate phase increases, paralleling the chemical shift variations of other cations and consistent with this site being relatively tightly bonded to the surface. The Cs-133 NMR chemical shifts of Cs2 do not vary systematically with solid composition due to the larger distance of these sites from the surface and weaker electrostatic attraction to the surface compared to Cs1. Rather, the Cs2 chemical shifts are significantly influenced by relative humidity (R. H.) and Cs population (Cs/H2O ratio) on the surface. The Cs1 chemical shifts vary less with these parameters. Cs2 is removed by washing with 1-5 mL of deionized water due to its weak attraction to the surface. The Cs1 chemical shifts become less shielded after washing and with decreasing solution concentration due to a decrease in the Cs surface density. At 100% R. H., Cs in the two sites undergoes motional averaging at frequencies > 100 kHz. With decreasing R. H., peaks for Cs on the two sites are resolved due to decreasing exchange frequencies related to a decreasing number of adsorbed water layers. Motional averaging at 100% R. H. is verified by low temperature experiments with illite. [References: 69]
机译:Cs交换的伊利石,高岭石,勃姆石和硅胶的Cs-133 MAS NMR被证明是研究Cs在矿物表面上的吸附位置和原子动力学的有力工具。铯主要通过两种方式吸附在这些矿物表面上:在与表面紧密结合的位置(斯特恩层,Cs1)和在扩散(古埃)层(Cs2)中较松散的结合位置。对于伊利石,边缘部位和微晶基面都是重要的吸附部位。对于高岭石,边缘部位,可膨胀层以及可能的微晶基面很重要。当底物相的Si / Al比增加时,Cs1位的Cs-133 NMR化学位移变得更被屏蔽(更负),与其他阳离子的化学位移变化平行,并且与该位点相对紧密地结合到表面上一致。与Cs1相比,Cs2的Cs-133 NMR化学位移不会随固体成分系统变化,这是因为这些位点距表面的距离较大且对表面的静电吸引力较弱。而是,Cs 2的化学位移受表面上的相对湿度(R. H.)和Cs种群(Cs / H2O比)的影响很大。这些参数使Cs1化学位移的变化较小。由于Cs2对表面的吸引力很弱,因此可以用1-5 mL去离子水洗涤以除去Cs2。由于Cs表面密度的降低,清洗后Cs1化学位移的屏蔽性降低,溶液浓度降低。在100%R.H.下,两个位置的Cs在> 100 kHz的频率下进行运动平均。随着R.H.的降低,由于与减少的吸附水层数量有关的交换频率降低,两个位点上Cs的峰被解析。通过伊利石低温实验验证了在100%R.H.下的运动平均。 [参考:69]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号