首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Heat transfer enhancement of spray cooling in straight-grooved surfaces in the non-boiling regime
【24h】

Heat transfer enhancement of spray cooling in straight-grooved surfaces in the non-boiling regime

机译:非沸腾状态下直槽表面喷雾冷却的传热增强

获取原文
获取原文并翻译 | 示例
       

摘要

Experiments were performed on six straight-grooved surfaces and one flat surface placed horizontally using pressure atomized full-cone nozzles to study the effects of structure parameters of surfaces and volumetric fluxes on heat transfer during water spray cooling in non-boiling regime. In the experiments, the surface temperature was set below 100 degrees C, and the nozzle was fixed 1.0 cm above surfaces. The results show that the surface with the groove depth of 0.5 mm and the groove width of 0.4 mm has the largest heat flux enhancement at the volumetric flux of 1.604 L/(m(2) s). While for the volumetric flux of 12.73 L/(m(2) s), the optimal heat transfer surface is another surface with the groove depth of 0.5 mm and the groove width of 0.2 mm, the heat flux of which is 202.5 W/cm(2) enhanced about 61.6% relative to the flat surface at the surface temperature of 80 degrees C. Three distinct heat transfers, which are heat transfer on top surface of fins, on sidewall of grooves and on bottom of grooves, are identified for spray cooling on straight-grooved surfaces. Based on the analysis of force acting on the falling droplet, it is found that the residual velocity of droplet is much larger for the volumetric flux of 12.73 L/(m(2) s) than the volumetric flux of 1.604 L/(m(2) s), which make the sidewall and bottom surface of grooves to be better cooled by spray at the volumetric flux of 12.73 L/(m(2) s). That is why the optimal heat transfer enhanced surfaces are different for two volumetric fluxes. A heat transfer model is derived which can accurately predict the heat fluxes of straight-grooved surfaces at the volumetric flux over 12.73 L/(m(2) s). (C) 2015 Elsevier Inc. All rights reserved.
机译:使用压力雾化全锥喷嘴对六个直槽表面和一个水平放置的平面进行了实验,以研究非沸腾状态下水喷雾冷却过程中表面的结构参数和体积通量对传热的影响。在实验中,将表面温度设置为低于100摄氏度,并将喷嘴固定在表面上方1.0厘米处。结果表明,凹槽深度为0.5 mm,凹槽宽度为0.4 mm的表面在体积通量为1.604 L /(m(2)s)时具有最大的热通量增强。对于12.73 L /(m(2)s)的体积通量,最佳传热表面是凹槽深度为0.5 mm,凹槽宽度为0.2 mm的另一个表面,其热通量为202.5 W / cm (2)在80°C的表面温度下,相对于平坦表面,增强了约61.6%。确定了三种不同的热传递,即鳍片顶表面,凹槽的侧壁和凹槽的底部的热传递,以便进行喷涂。直槽表面冷却。根据作用在下降的液滴上的力的分析,发现对于127.33 L /(m(2)s)的体积通量,液滴的残留速度要比1.604 L /(m( 2)s),这使沟槽的侧壁和底表面可以通过喷雾以12.73 L /(m(2)s)的体积通量更好地冷却。这就是为什么两个体积通量的最佳传热增​​强表面不同的原因。导出了一个传热模型,该模型可以准确地预测直槽表面在体积通量超过12.73 L /(m(2)s)时的热通量。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号