...
首页> 外文期刊>Geochemistry, geophysics, geosystems >Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes
【24h】

Modeled temperatures and fluid source distributions for the Mexican subduction zone: Effects of hydrothermal circulation and implications for plate boundary seismic processes

机译:墨西哥俯冲带的模拟温度和流体源分布:热液循环的影响及其对板块边界地震过程的影响

获取原文
获取原文并翻译 | 示例

摘要

In subduction zones, spatial variations in pore fluid pressure are hypothesized to control the sliding behavior of the plate boundary fault. The pressure-temperature paths for subducting material control the distributions of dehydration reactions, a primary control on the pore fluid pressure distribution. Thus, constraining subduction zone temperatures are required to understand the seismic processes along the plate interface. We present thermal models for three margin-perpendicular transects in the Mexican subduction zone. We examine the potential thermal effects of vigorous fluid circulation in a high-permeability aquifer within the basaltic basement of the oceanic crust and compare the results with models that invoke extremely high pore fluid pressures to reduce frictional heating along the megathrust. We combine thermal model results with petrological models to determine the spatial distribution of fluid release from the subducting slab and compare dewatering locations with the locations of seismicity, nonvolcanic tremor, slow-slip events, and low-frequency earthquakes. Simulations including hydrothermal circulation are most consistent with surface heat flux measurements. Hydrothermal circulation has a maximum cooling effect of 180 degrees C. Hydrothermally cooled crust carries water deeper into the subduction zone; fluid release distributions in these models are most consistent with existing geophysical data. Our models predict focused fluid release, which could generate overpressures, coincident with an observed ultraslow layer (USL) and a region of nonvolcanic tremor. Landward of USLs, a downdip decrease in fluid source magnitude could result in the dissipation in overpressure in the oceanic crust without requiring a downdip increase in fault zone permeability, as posited in previous studies.
机译:在俯冲带中,假设孔隙流体压力的空间变化可以控制板块边界断层的滑动行为。俯冲物质的压力-温度路径控制着脱水反应的分布,这是对孔隙流体压力分布的主要控制。因此,需要约束俯冲带温度来理解沿板界面的地震过程。我们介绍了墨西哥俯冲带中三个边缘-垂直样条的热模型。我们检查了洋壳玄武岩基底中高渗透性含水层中剧烈流体循环的潜在热效应,并将结果与​​调用极高孔隙流体压力以减少沿巨推力的摩擦加热的模型进行了比较。我们将热模型结果与岩石模型相结合,以确定俯冲板中流体释放的空间分布,并将脱水位置与地震活动性,非火山性地震,慢滑事件和低频地震的位置进行比较。包括水热循环在内的模拟与表面热通量测量最一致。水热循环的最大冷却效果为180摄氏度。水热冷却的地壳将水带入更深的俯冲带。这些模型中的流体释放分布与现有地球物理数据最一致。我们的模型预测会释放出集中的流体,这可能会产生超压,与观察到的超慢层(USL)和非火山性震颤区域相吻合。如先前的研究中所述,USL的陆面,流体源量的下降下降可能会导致洋壳超压的消散,而无需断层带渗透率下降下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号