首页> 外文期刊>Geochemistry, geophysics, geosystems >The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation
【24h】

The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

机译:含水合物沉积物产气的保水曲线和相对渗透率:孔隙网络模型模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.
机译:保水曲线和相对渗透率对于预测含水合物沉积物的天然气和水的产量至关重要。然而,由于实验上的挑战,尚未确定表征水合物分解过程中气流和水的关键参数值。这项研究利用微焦点X射线计算机断层扫描(CT)和孔隙网络模型仿真的组合技术,为那些关键参数(例如进气压力,残留水饱和度和曲线拟合值)确定合适的值。在孔隙网络中实现了具有各种饱和度和形态的水合物,该孔隙网络是从从Mallik站点的水合物矿床中回收的沉积物的微米级分辨率CT图像中提取出来的,然后进行了气体入侵,水合物分解,气体膨胀和天然气的过程。和水渗透性被模拟。结果表明,沉积物中较大的水合物饱和度会导致更高的气体进入压力,更高的残留水饱和度和更陡的保水曲线。水合物饱和度的增加会降低气体渗透率,但对水合物均匀分布的沉积物中的水渗透率具有边际影响。与水合物饱和度相比,水合物形态对相对渗透率的影响更大。水合物分布不均的沉积物往往导致较低的残留水饱和度和较高的气体和水渗透率。从这个意义上讲,分别使用两个拟合参数进行气体和水渗透率的Brooks-Corey模型可以正确捕获水合物饱和度和形态对含水合物沉积物中气体和水流的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号