...
首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Experimental investigation of the propagation characteristics of an interface wave in a jet pump under cavitation condition
【24h】

Experimental investigation of the propagation characteristics of an interface wave in a jet pump under cavitation condition

机译:空化条件下射流泵中界面波传播特性的实验研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

There is a dynamic equilibrium interface wave between the bubble region and the liquid region when a jet pump produces cavitation. The interface wave has an unstable boundary that moves backward and forward, and it is a pressure propagation front that causes the pressure change. The reason why the jet pump upstream pressures remain unchanged is because the interface wave has not arrived there. The interface wave moves upstream with the increase in outlet pressure. The region that it passes through experiences obvious pressure fluctuation and pressure rise. The nozzle cavity pressure rises slower than the throat cavity pressure, and the nozzle cavity has a lower pressure fluctuation frequency and smaller fluctuation range. Therefore, it is a good design for the jet pump to set the suction inlet near the nozzle cavity. In addition, the bubble region length, bubble region volume and bubble diameter decrease as the cavitation number increases in the jet pump. The bubbles completely vanish when the cavitation number reaches 1.53-1.59. Based on the above contributions, it is believed that this study will lay an important foundation for further research on the jet pump cavitation mechanism and cavitation prevention. (C) 2015 Elsevier Inc. All rights reserved.
机译:当喷射泵产生气蚀时,在气泡区域和液体区域之间存在动态平衡界面波。界面波具有不稳定的边界,该边界会前后移动,并且它是导致压力变化的压力传播前沿。喷射泵上游压力保持不变的原因是因为界面波尚未到达此处。随着出口压力的增加,界面波向上游移动。它经过的区域经历明显的压力波动和压力上升。喷嘴腔压力的上升比喉腔压力的上升慢,并且喷嘴腔的压力波动频率较低,波动范围较小。因此,对于喷射泵来说,将吸气入口设置在喷嘴腔附近是一个很好的设计。另外,随着喷射泵中的气穴数增加,气泡区域长度,气泡区域体积和气泡直径减小。当空化数达到1.53-1.59时,气泡完全消失。基于上述贡献,相信这项研究将为进一步研究喷射泵气蚀机理和防止气蚀奠定重要的基础。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号