首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Combustion characteristics of methane–oxygen enhanced air turbulent non-premixed swirling flames
【24h】

Combustion characteristics of methane–oxygen enhanced air turbulent non-premixed swirling flames

机译:甲烷-氧气增强的空气湍流非预混涡流火焰的燃烧特性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Application of oxygen-enhanced combustion to existing fossil fuel energy systems to facilitate CO_2 capture presents several challenges. This work investigates the combustion characteristics of methane oxygen enriched air turbulent non-premixed swirling flames. It focuses on the stability of flames, NO_x, CO_2 and CO emissions and the flow field dynamics. The burner configuration consists of two concentric tubes with a swirler placed in the annular part for the oxydant. The experiments are conducted using a 25 kW water cooled combustion chamber. The exhaust gas compositions are measured using gas analyzers. OH chemiluminescence experiments are conducted to investigate the structure and the stability of the flames without and with oxygen enrichment. Flame liftoff heights, fluctuations of the flame base and flame lengths are determined. Particle Image Velocimetry is used to analyze the dynamics of swirling flows. The measurements are performed for oxygen concentrations ranging from 21% to 30% by volume, with swirl numbers from 0.8 to 1.4 and global equivalence ratios from 0.8 to 1. The results show that the addition of oxygen to air, while keeping the oxidant flow rate constant, enhances the combustion efficiency and flame stability. It is observed that increasing oxygen concentration leads to lower lift-off heights and reduces flame height fluctuations. Increasing the swirl number significantly improves the flame stability. The results demonstrate that the CO_2 emissions in the exhaust gases linearly increase with increasing O_2 content in the oxidant. The CO emissions are shown to decay exponentially, whereas the NO_x emissions, mainly produced through the thermal pathway, increase strongly with oxygen enrichment. The PIV results illustrate that increasing the swirl intensity increases the reverse flow velocities close to the burner exit. The decay of axial velocity presents favorable flow patterns for the stabilization of the flame.
机译:在现有的化石燃料能源系统中应用增氧燃烧以促进CO_2的捕集面临若干挑战。这项工作研究了甲烷富氧空气湍流非预混涡旋火焰的燃烧特性。它着重于火焰,NO_x,CO_2和CO排放的稳定性以及流场动力学。燃烧器配置由两个同心管组成,两个同心管中的旋流器置于氧化剂中。实验是使用25 kW水冷式燃烧室进行的。使用气体分析仪测量废气成分。进行了OH化学发光实验,以研究在不富氧和富氧情况下火焰的结构和稳定性。确定火焰的上升高度,火焰基数的波动和火焰长度。粒子图像测速技术用于分析旋流的动力学。对氧气浓度范围为21%至30%(体积),涡旋数为0.8至1.4,总当量比为0.8至1进行测量。结果表明,向空气中添加氧气,同时保持氧化剂的流速恒定,提高燃烧效率和火焰稳定性。可以看出,氧气浓度的增加导致较低的提起高度,并减少了火焰高度的波动。增加旋流数显着提高了火焰稳定性。结果表明,随着氧化剂中O_2含量的增加,废气中的CO_2排放量呈线性增加。结果表明,CO排放呈指数下降,而主要通过热途径产生的NO_x排放随氧气富集而急剧增加。 PIV结果表明,增加旋流强度会增加靠近燃烧器出口的逆流速度。轴向速度的衰减为火焰稳定提供了有利的流动模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号