...
首页> 外文期刊>Experimental Thermal and Fluid Science: International Journal of Experimental Heat Transfer, Thermodynamics, and Fluid Mechanics >Measurement on instantaneous flame front structure of turbulent premixed CH_4/H_2/air flames
【24h】

Measurement on instantaneous flame front structure of turbulent premixed CH_4/H_2/air flames

机译:预混湍流CH_4 / H_2 /空气火焰瞬时火焰前锋结构的测量

获取原文
获取原文并翻译 | 示例
           

摘要

Instantaneous flame front structure of turbulent premixed CH_4/H_2/air flames (hydrogen fraction of 0%, 5%, 10% and 20% by mole fraction) was investigated quantitatively using a nozzle-type Bunsen burner. Hot wire anemometer and OH-PLIF were used to measure the turbulent flow and detect the instantaneous flame front structure, respectively. Turbulent burning velocity, ST, flame surface density, R, and mean flame volume, Vf, were calculated by processing the OH-PLIF images. Results show that the flame front structures of the turbulent premixed flames are the wrinkled flame front and it becomes much finer with the increase of turbulence intensity as well as hydrogen fraction. The value of ST/SL significantly increases with the increase of u0/SL and it slightly increases with the increase of hydrogen fraction. Flame surface density profile are symmetric and gives its maximum value at about hci = 0.5. Hydrogen addition slightly enhances the R and the tendency is more obvious under higher turbulence intensity. The decrease of R with the increase of turbulence intensity is mainly due to the effect of flame volume. The mean flame volume of flame region obviously increases with the increase of turbulence intensity within the experimental range due to the increase in depth of the large scale flame wrinkles and flame height. Hydrogen addition is not a predominant factor within the hydrogen fraction range in this study.
机译:使用喷嘴型本生灯燃烧器定量研究了湍流预混CH_4 / H_2 /空气火焰的瞬时火焰前部结构(氢分数为0%,5%,10%和20%摩尔比)。使用热线风速计和OH-PLIF分别测量湍流和检测瞬时火焰前部结构。通过处理OH-PLIF图像可计算出湍流燃烧速度ST,火焰表面密度R和平均火焰体积Vf。结果表明,湍流预混火焰的火焰前部结构是起皱的火焰前部,并且随着湍流强度和氢分数的增加而变得更细。 ST / SL的值随u0 / SL的增加而显着增加,而随氢分数的增加而略有增加。火焰表面密度分布是对称的,并在大约hci = 0.5时给出最大值。加氢稍微提高了R,并且在更高的湍流强度下这种趋势更加明显。 R随着湍流强度的增加而降低,主要是由于火焰体积的影响。在实验范围内,由于大范围火焰起皱的深度和火焰高度的增加,火焰区域的平均火焰量随着湍流强度的增加而明显增加。在这项研究中,加氢不是氢分数范围内的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号