首页> 外文期刊>Experimental Gerontology >Age-related calcium changes, oxyradical damage, caspase activation and nuclear condensation in hippocampal neurons in response to glutamate and beta-amyloid.
【24h】

Age-related calcium changes, oxyradical damage, caspase activation and nuclear condensation in hippocampal neurons in response to glutamate and beta-amyloid.

机译:与谷氨酸和β-淀粉样蛋白反应的海马神经元中与年龄相关的钙变化,氧自由基损伤,胱天蛋白酶激活和核浓缩。

获取原文
获取原文并翻译 | 示例
       

摘要

Neuronal degeneration increases with age in response to stressors, but the sub-cellular mechanism is unknown, partly because of previous difficulty in studying aged neurons in isolation. We studied the mechanism of enhanced neuronal susceptibility to glutamate and beta-amyloid in terms of condensed nuclei and other upstream events in hippocampal neurons cultured from old rats (24 months) compared to middle-age (10 months) and embryonic rats. Treatment of neurons from old animals with beta-amyloid (or glutamate) produced condensed nuclei 1.5x (2x) more frequently than middle-age and 3x (4x) more frequently than embryonic neurons. In addition to age-related baseline levels of caspase activation, neurons from old animals showed a 50% greater increase in caspase activation compared to middle-age and embryonic neurons. In contrast to glutamate treatment, beta-amyloid caused oxyradical damage as protein carbonyls increased 2-fold higher for old neurons than middle-age and 10-fold higher than embryonic neurons. Contrary to expectations, steady-state calcium levels for adult neurons did not increase in response to beta-amyloid. Overall, these results suggest that aged neurons have an inherent increased susceptibility to beta-amyloid toxicity through an early action of oxyradicals followed by caspase activation and nuclear condensation, a common pathway of apoptosis. Age-related glutamate toxicity involves other steps that lead to nuclear condensation, but neuron responses to calcium influx appear more important to cell death than the amount of influx.
机译:神经元变性随着年龄的增长而随着应激源的增加而增加,但是亚细胞机制尚不明确,部分原因是以前难以单独研究衰老的神经元。我们研究了老年大鼠(24个月)相比中年(10个月)和胚胎大鼠培养的海马神经元在浓缩核和其他上游事件方面对谷氨酸和β-淀粉样蛋白增强神经元敏感性的机制。用β-淀粉样蛋白(或谷氨酸)处理老龄动物的神经元产生的凝结核的频率比中年高1.5倍(2倍),比胚胎神经元高3倍(4倍)。除了与年龄相关的胱天蛋白酶激活的基线水平,与中年和胚胎神经元相比,来自老年动物的神经元胱天蛋白酶的激活增加了50%。与谷氨酸处理相反,β-淀粉样蛋白引起羟自由基损伤,因为老年神经元的蛋白质羰基增加比中年高2倍,比胚胎神经元高10倍。与预期相反,成年神经元的稳态钙水平并未因β-淀粉样蛋白而增加。总体而言,这些结果表明,通过氧化自由基的早期作用,然后激活半胱天冬酶激活和核浓缩(一种常见的凋亡途径),衰老的神经元对β-淀粉样蛋白毒性的内在敏感性增加。与年龄有关的谷氨酸毒性涉及导致核浓缩的其他步骤,但神经元对钙内流的反应似乎比细胞内通入量更重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号