...
首页> 外文期刊>Experimental Neurology >Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.
【24h】

Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.

机译:农药鱼藤酮在纹状体胆碱能中间神经元中引起的早期离子和膜电位变化。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mitochondrial metabolism impairment has been implicated in the pathogenesis of several neurodegenerative disorders. In the present work, we combined electrophysiological recordings and microfluorometric measurements from cholinergic interneurons obtained from a rat neostriatal slice preparation. Acute application of the mitochondrial complex I inhibitor rotenone produced an early membrane hyperpolarization coupled to a fall in input resistance, followed by a late depolarizing response. Current-voltage relationship showed a reversal potential of -80 +/- 3 mV, suggesting the involvement of a potassium (K(+)) current. Simultaneous measurement of intracellular sodium [Na(+)](i) or calcium [Ca(2+)](i) concentrations revealed a striking correlation between [Na(+)](i) elevation and the early membrane hyperpolarization, whereas a significant [Ca(2+)](i) rise matched the depolarizing phase. Interestingly, ion and membrane potential changes were mimicked by ouabain, inhibitor of the Na(+)-K(+)ATPase, and were insensitive to tetrodotoxin (TTX) or to a combination of glutamate receptor antagonists. The rotenone effects were partially reduced by blockers of ATP-sensitive K(+) channels, glibenclamide and tolbutamide, and largely attenuated by a low Na(+)-containing solution. Morphological analysis of the rotenone effects on striatal slices showed a significant decrease in the number of choline acetyltransferase (ChAT) immunoreactive cells.These results suggest that rotenone rapidly disrupts the ATP content, leading to a decreased Na(+)-K(+)ATPase function and, therefore, to [Na(+)](i) overload. In turn, the hyperpolarizing response might be generated both by the opening of ATP-sensitive K(+) channels and by Na(+)-activated K(+) conductances. The increase in [Ca(2+)](i) occurs lately and does not seem to influence the early events.
机译:线粒体代谢受损与几种神经退行性疾病的发病机理有关。在目前的工作中,我们结合了从大鼠新纹状体切片制备物中获得的胆碱能中间神经元的电生理记录和微荧光测量。急性应用线粒体复合物I抑制剂鱼藤酮会产生早期的膜超极化,并伴有输入电阻的下降,然后出现后期的去极化反应。电流-电压关系显示了-80 +/- 3 mV的反向电势,表明涉及钾(K(+))电流。同时测量细胞内钠[Na(+)](i)或钙[Ca(2 +)](i)的浓度揭示了[Na(+)](i)升高与早期膜超极化之间的显着相关性,而显着的[Ca(2 +)](i)上升与去极化阶段匹配。有趣的是,离子和膜电位变化被哇巴因(Na(+)-K(+)ATPase的抑制剂)模拟,并且对河豚毒素(TTX)或谷氨酸受体拮抗剂的组合不敏感。鱼藤酮的作用被ATP敏感的K(+)通道,格列本脲和甲苯磺丁酰胺的阻滞剂部分降低,并被低含量的Na(+)溶液大大减弱。鱼藤酮对纹状体切片的影响的形态学分析表明胆碱乙酰转移酶(ChAT)免疫反应细胞的数量显着减少,这些结果表明鱼藤酮会迅速破坏ATP含量,导致Na(+)-K(+)ATPase降低功能,因此,[Na(+)](i)重载。反过来,打开ATP敏感的K(+)通道和Na(+)激活的K(+)电导都可能产生超极化响应。 [Ca(2 +)](i)的增加是最近发生的,似乎并不影响早期事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号