首页> 外文期刊>Experimental Mechanics >Effect of pressure on fluid damping in MEMS torsional resonators with flow ranging from continuum to molecular regime
【24h】

Effect of pressure on fluid damping in MEMS torsional resonators with flow ranging from continuum to molecular regime

机译:压力对MEMS扭转谐振器中流体衰减的影响,其流动范围从连续到分子状态

获取原文
获取原文并翻译 | 示例
           

摘要

High quality factor of dynamic structures at micro and nano scale is exploited in various applications of micro electro-mechanical systems (MEMS) and nano electro-mechanical system. The quality factor of such devices can be very high in vacuum. However, when vacuum is not desirable or not possible, the tiny structures must vibrate in air or some other gas at pressure levels that may vary from atmospheric to low vacuum. The interaction of the surrounding fluid with the vibrating structure leads to dissipation, thus bringing down the quality factor. Depending on the ambient fluid pressure or the gap between the vibrating and the fixed structure, the fluid motion can range from continuum flow to molecular flow giving a wide range of dissipation. The relevant fluid flow characteristics are determined by the Knudsen number which is the ratio of the mean free path of the gas molecule to the characteristic flow length of the device. This number is very small for continuum flow and reasonably big for molecular flow. In this paper, we study the effect of fluid pressure on the quality factor by carrying out experiments on a MEMS device that consists of a double gimbaled torsional resonator. Such devices are commonly used in optical cross-connects and switches. We only vary fluid pressure to make the Knudsen number go through the entire range of continuum flow, slip flow, transition flow, and molecular flow. We experimentally determine the quality factor of the torsional resonator at different air pressures ranging from 760 Torr to 0.001 Torr. The variation of this pressure over six orders of magnitude ensures required rarefaction to range over all flow conditions. Finally, we get the variation of quality factor with pressure. The result indicates that the quality factor, Q, follows a power law, Q alpha P-r , with different values of the exponent r in different flow regimes. In the second part of the paper, we propose the use of effective viscosity for considering velocity slip conditions in solving Navier-Stokes equation numerically. This concept is validated with analytical results for a simple case and then compared with the experimental results presented in this paper. The study shows that the effective viscosity concept can be used effectively even for the molecular regime if the air-gap to length ratio is sufficiently small (h(0)/L < 0.01). As this ratio increases, the range of validity decreases.
机译:在微机电系统(MEMS)和纳米机电系统的各种应用中,利用了微米级和纳米级动态结构的高质量因子。这种设备的质量因数在真空中可能很高。但是,当不希望有真空或真空不可行时,微型结构必须在空气或某些其他气体中以从大气压到低真空的压力水平振动。周围流体与振动结构的相互作用导致耗散,从而降低了品质因数。根据周围的流体压力或振动与固定结构之间的间隙,流体的运动范围可以从连续流到分子流,从而产生很大的耗散范围。相关的流体流动特性由克努森数确定,克努森数是气体分子的平均自由程与设备特征流量的比值。对于连续流,此数字很小,而对于分子流,该数字很大。在本文中,我们通过在由双万向节扭转谐振器组成的MEMS器件上进行实验,研究了流体压力对品质因数的影响。这种设备通常用于光学交叉连接器和交换机。我们仅改变流体压力以使Knudsen数遍及连续流,滑流,过渡流和分子流的整个范围。我们通过实验确定了在760托至0.001托的不同气压下扭转谐振器的品质因数。该压力在六个数量级上的变化可确保所需的稀疏度在所有流量条件下均能变化。最后,我们得到质量因数随压力的变化。结果表明,品质因数Q遵循幂定律Q alpha P-r,在不同的流态下,指数r的值不同。在本文的第二部分中,我们提出在数值求解Navier-Stokes方程时考虑有效滑移条件来考虑有效滑移条件。通过一个简单案例的分析结果验证了该概念,然后将其与本文介绍的实验结果进行了比较。研究表明,如果气隙与长度之比足够小(h(0)/ L <0.01),则即使在分子体系中,有效粘度概念也可以有效使用。随着该比率的增加,有效范围会减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号