...
首页> 外文期刊>European Physical Journal Plus >Models of universe with a polytropic equation of state: II. The late universe
【24h】

Models of universe with a polytropic equation of state: II. The late universe

机译:具有多态状态方程的宇宙模型:II。宇宙晚期

获取原文
获取原文并翻译 | 示例

摘要

We construct models of universe with a generalized equation of state having a linear component and a polytropic component. Concerning the linear equation of state , we assume . This equation of state describes radiation () or pressureless matter (). Concerning the polytropic equation of state , we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider negative indices n < 0. In this case, the polytropic component dominates the linear component in the late universe where the density is low. For , and , where g/m(3) is the cosmological density, we obtain a model of late universe describing the transition from the matter era to the dark energy era. The universe exists at any time in the future and there is no singularity. It undergoes an inflationary expansion (exponential acceleration) with the cosmological density g/m(3) (dark energy) on a timescale s. Coincidentally, we live close to the transition between the matter era and the dark energy era, corresponding to a size m and a time s. For , and , we obtain a model of cyclic universe appearing and disappearing periodically. If we were living in this universe, it would disappear in about 2.38 billion years. We make the connection between the early and the late universe and propose a simple equation describing the whole evolution of the universe. This leads to a model of universe that is eternal in past and future without singularity (aioniotic universe). It refines the standard CDM model by incorporating naturally a phase of early inflation and removing the primordial singularity (Big Bang). This model exhibits a nice "symmetry" between the early and the late universe, the cosmological constant in the late universe playing the same role as the Planck constant in the early universe. The pressure is successively negative (early inflation), positive (radiation and matter eras), and negative again (late inflation). We interpret the cosmological constant as a fundamental constant of nature describing the "cosmophysics" just like the Planck constant describes the "microphysics". The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant "problem" may be a false problem. We determine the potential of the scalar field (quintessence, tachyon field) corresponding to the generalized equation of state . We also propose a unification of vacuum energy, radiation, and dark energy through the quadratic equation of state p/c(2) = -4 rho(2)/3 rho(P) + rho/3 - 4 rho(Lambda)/3.
机译:我们用具有线性分量和多方分量的广义状态方程构造宇宙模型。关于状态线性方程,我们假设。状态方程描述的是辐射()或无压物质()。关于多态状态方程,我们仍然非常笼统,允许多变常数k和多变指数n具有任意值。在本文中,我们考虑负指数n <0。在这种情况下,在密度较低的宇宙后期,多方分量主导线性分量。对于和,其中g / m(3)是宇宙密度,我们获得了一个晚期宇宙模型,该模型描述了从物质时代到暗能量时代的转变。宇宙在将来的任何时候都存在,并且没有奇异之处。它在时间尺度s上以宇宙密度g / m(3)(暗能量)经历膨胀膨胀(指数加速度)。巧合的是,我们生活在物质时代和暗能量时代之间的过渡期,对应于大小m和时间s。对于和,我们获得周期性出现和消失的循环宇宙模型。如果我们生活在这个宇宙中,它将在大约23.8亿年内消失。我们建立了早期和晚期宇宙之间的联系,并提出了一个描述宇宙整个演化的简单方程式。这导致了一个过去和将来永恒的,没有奇异性的模型(原子宇宙)。它通过自然地纳入早期膨胀阶段并消除原始奇异点(大爆炸)来完善标准的CDM模型。该模型在早期和晚期宇宙之间表现出良好的“对称性”,晚期宇宙中的宇宙学常数与早期宇宙中的普朗克常数起着相同的作用。压力依次是负的(早期膨胀),正的(辐射和物质时代)和负的(晚期膨胀)。我们将宇宙学常数解释为描述“宇宙物理学”的自然界基本常数,就像普朗克常数描述“微观物理学”一样。普朗克密度和宇宙学密度表示相差122个数量级的基本上限和下限。宇宙常数“问题”可能是一个错误的问题。我们确定与广义状态方程相对应的标量场(典范性,tachyon场)的势能。我们还建议通过状态p / c(2)= -4 rho(2)/ 3 rho(P)+ rho / 3-4 rho(Lambda)/的二次方程式来统一真空能,辐射能和暗能3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号