首页> 外文期刊>European Physical Journal Plus >Models of universe with a polytropic equation of state: I. The early universe
【24h】

Models of universe with a polytropic equation of state: I. The early universe

机译:具有多态状态方程的宇宙模型:I.早期宇宙

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We construct models of universe with a generalized equation of state p = (alpha rho + k rho(1+1))c(2) having a linear component and a polytropic component. Concerning the linear equation of state p = alpha rho c(2), we assume -1 <= alpha <= 1. This equation of state describes radiation (alpha = 1/3) or pressureless matter (alpha = 0). Concerning the polytropic equation of state p = k rho(1+1) c(2), we remain very general allowing the polytropic constant k and the polytropic index n to have arbitrary values. In this paper, we consider positive indices n > 0. In that case, the polytropic component dominates the linear component in the early universe where the density is high. For alpha = 1/3, n = 1 and k = -4/(3 rho(P)), where rho(P) = 5.16 10(99) g/m(3) is the Planck density, we obtain a model of early universe describing the transition from the vacuum energy era to the radiation era. The universe exists at any time in the past and there is no primordial singularity. However, for t < 0, its size is less than the Planck length l(P) = 1.62 10(-35) m. In this model, the universe undergoes an inflationary expansion with the Planck density rho(P) = 5.16 10(99) g/m(3) (vacuum energy) that brings it from the Planck size l(P) = 1.62 10(-35) m at t = 0 to a size a(1) = 2.61 10(-6) m at t(1) = 1.25 10(-42) s (corresponding to about 23.3 Planck times t(P) = 5.39 10(-44) s). For alpha = 1/3, n = 1 and k = 4/(3 rho(P)), we obtain a model of early universe with a new form of primordial singularity: The universe starts at t = 0 with an infinite density and a finite radius a = a(1). Actually, this universe becomes physical at a time t(i) = 8.32 10(-45) s from which the velocity of sound is less than the speed of light. When a a(1), the universe enters in the radiation era and evolves like in the standard model. We describe the transition from the vacuum energy era to the radiation era by analogy with a second-order phase transition where the Planck constant <(h)over bar> plays the role of finite-size effects (the standard Big Bang theory is recovered for (h) over bar = 0).
机译:我们用具有线性分量和多向分量的状态p =(αrho + k rho(1 + 1 / n))c(2)的广义方程构造宇宙模型。关于状态p = alpha rho c(2)的线性方程,我们假设-1 <= alpha <=1。该状态方程描述的是辐射(α= 1/3)或无压物质(α= 0)。关于状态p = k rho(1 + 1 / n)c(2)的多方方程,我们仍然很笼统,允许多方常数k和多方指数n具有任意值。在本文中,我们考虑正指数n>0。在这种情况下,在密度较高的早期宇宙中,多变分量主导线性分量。对于alpha = 1/3,n = 1和k = -4 /(3 rho(P)),其中rho(P)= 5.16 10(99)g / m(3)是普朗克密度,我们得到了一个模型描绘了从真空能量时代到辐射时代的过渡的早期宇宙。宇宙在过去的任何时候都存在,并且没有原始奇点。但是,对于t <0,其大小小于普朗克长度l(P)= 1.62 10(-35)m。在该模型中,宇宙经历了普朗克密度rho(P)= 5.16 10(99)g / m(3)(真空能量)的膨胀膨胀,这使它从普朗克尺寸l(P)= 1.62 10(- 35)t = 0时的m到a(1)= 2.61 10(-6)m的大小在t(1)= 1.25 10(-42)s(对应于大约23.3的普朗克时间t(P)= 5.39 10( -44)s)。对于alpha = 1/3,n = 1和k = 4 /(3 rho(P)),我们获得了具有新形式原始奇异性的早期宇宙模型:宇宙从t = 0开始,具有无限的密度,并且有限半径a = a(1)。实际上,该宇宙在时间t(i)= 8.32 10(-45)s处变为物理状态,从该时间起,声速小于光速。当a a(1)时,宇宙进入辐射时代,并且像标准模型一样演化。我们通过类比二阶相变来描述从真空能时代到辐射时代的转变,其中普朗克常数<(h)over bar>起着有限大小效应的作用(标准的大爆炸理论被恢复为(h)超过bar = 0)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号