...
【24h】

In silico evaluation of a new composite disc substitute with a L3-L5 lumbar spine finite element model.

机译:在计算机上评估使用L3-L5腰椎有限元模型的新型复合椎间盘替代品。

获取原文
获取原文并翻译 | 示例

摘要

When the intervertebral disc is removed to relieve chronic pain, subsequent segment stabilization should restore the functional mechanics of the native disc. Because of partially constrained motions and the lack of intrinsic rotational stiffness ball-on-socket implants present many disadvantages. Composite disc substitutes mimicking healthy disc structures should be able to assume the role expected for a disc substitute with fewer restrictions than ball-on-socket implants. A biomimetic composite disc prototype including artificial nucleus fibre-reinforced annulus and endplates was modelled as an L4-L5 disc substitute within a L3-L5 lumbar spine finite element model. Different device updates, i.e. changes of material properties fibre distributions and volume fractions and nucleus placements were proposed. Load- and displacement-controlled rotations were simulated with and without body weight applied. The original prototype reduced greatly the flexibility of the treated segment with significant adjacent level effects under displacement-controlled or hybrid rotations. Device updates allowed restoring large part of the global axial and sagittal rotational flexibility predicted with the intact model. Material properties played a major role, but some other updates were identified to potentially tune the device behaviour against specific motions. All device versions altered the coupled intersegmental shear deformations affecting facet joint contact through contact area displacements. Loads in the bony endplates adjacent to the implants increased as the implant stiffness decreased but did not appear to be a strong limitation for the implant biomechanical and mechanobiological functionality. In conclusion, numerical results given by biomimetic composite disc substitutes were encouraging with greater potential than that offered by ball-on-socket implants.
机译:当取出椎间盘以减轻慢性疼痛时,随后的节段稳定应恢复天然椎间盘的功能机制。由于部分受限制的运动和缺乏固有的旋转刚度,因此,在球上植入球具有许多缺点。模仿健康椎间盘结构的复合椎间盘替代品应能够承担预期的角色,而对椎间盘置换的限制要比球上植入物少。在L3-L5腰椎有限元模型中,将仿生复合椎间盘原型(包括人造核纤维环和终板)建模为L4-L5椎间盘替代物。提出了不同的设备更新,即,改变了材料特性,纤维分布和体积分数以及核位置。在没有施加体重的情况下,模拟了负载和位移控制的旋转。原始原型大大降低了处理段的灵活性,在位移控制或混合旋转下具有显着的相邻水平效果。设备更新允许恢复使用完整模型预测的大部分轴向和矢状旋转柔韧性。材料属性起着主要作用,但是还确定了其他一些更新,以针对特定运动潜在地调整设备行为。所有设备版本都改变了耦合的节间剪切变形,从而通过接触区域位移影响小关节接触。随着植入物硬度的降低,邻近植入物的骨终板中的载荷增加,但似乎对植入物的生物力学和机械生物学功能似乎没有很大的限制。总之,仿生复合材料椎间盘替代品给出的数值结果令人鼓舞,其潜力远大于球上植入物。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号