...
首页> 外文期刊>European Biophysics Journal >Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators
【24h】

Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators

机译:探究侧向疏水缔合在自组装肽水凝胶剂中的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

A class of peptides has been designed whose ability to self-assemble into hydrogel is dependent on their conformationally folded state. Under unfolding conditions aqueous peptide solutions are freely flowing having the viscosity of water. When folding is triggered by external stimuli, peptides adopt a beta-hairpin conformation that self-assembles into a highly crosslinked network of fibrils affording mechanically rigid hydrogels. MAX 1, a 20 residue, amphiphilic hairpin self-assembles via a mechanism which entails both lateral and facial self-assembly events to form a network of fibrils whose local structure consists of a bilayer of hairpins hydrogen bonded in the direction of fibril growth. Lateral self-assembly along the long axis of the fibril is mainly facilitated by intermolecular hydrogen bonding between the strands of distinct hairpins and the formation of hydrophobic contacts between residue side chains of laterally associating hairpins. Facial assembly is driven by the hydrophobic collapse of the valine-rich faces of the amphiphilic hairpins affording a bilayer laminate. The importance of forming lateral hydrophobic contacts during hairpin self-assembly and the relative contribution these interactions have towards nano-scale morphology and material rigidity is probed via the study of: MAX1, a hairpin designed to exploit lateral hydrophobic interactions; MAX 4, a peptide with reduced ability to form these interactions; and MAX5, a control peptide. CD spectroscopy and rheological experiments suggest that the formation of lateral hydrophobic interactions aids the kinetics of assembly and contributes to the mechanical rigidity of the hydrogel. Transmission electron microscopy (TEM) shows that these interactions play an essential role in the self-assembly process leading to distinct nano-scale morphologies.
机译:已经设计了一类肽,其自组装成水凝胶的能力取决于它们的构象折叠状态。在展开条件下,具有水粘度的肽水溶液自由流动。当外部刺激触发折叠时,肽段会采用β-发夹构象,该构象会自组装成高度交联的原纤维网络,从而提供机械刚性的水凝胶。 MAX 1是一种20个残基的两亲发夹,通过一种机制进行自组装,该机制需要同时发生侧面和面部自组装事件,从而形成原纤维网络,其局部结构由在纤维生长方向上氢键结合的双层发夹组成。沿原纤维长轴的侧向自组装主要是通过不同发夹的链之间的分子间氢键和横向缔合的发夹的残基侧链之间形成疏水接触而促进的。通过两亲发夹的富含缬氨酸的面的疏水塌陷来驱动面部组装,从而提供双层层压体。在发夹自组装过程中形成侧向疏水性接触的重要性,以及这些相互作用对纳米级形态和材料刚度的相对贡献,可通过以下研究进行探讨:MAX1,旨在利用侧向疏水性相互作用的发夹; MAX 4,形成这些相互作用的能力降低的肽;和MAX5,一种对照肽。 CD光谱学和流变学实验表明,侧向疏水性相互作用的形成有助于组装的动力学并有助于水凝胶的机械刚性。透射电子显微镜(TEM)表明,这些相互作用在自组装过程中起着至关重要的作用,导致了明显的纳米级形态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号