...
首页> 外文期刊>European Journal of Soil Science >Combining EMI and GPR for non-invasive soil sensing at the Stonehenge World Heritage Site: the reconstruction of a WW1 practice trench
【24h】

Combining EMI and GPR for non-invasive soil sensing at the Stonehenge World Heritage Site: the reconstruction of a WW1 practice trench

机译:巨石阵世界遗产地将EMI和GPR结合用于非侵入性土壤传感:第一次世界大战实践战reconstruction的重建

获取原文
获取原文并翻译 | 示例
           

摘要

Increasingly, conventional soil sampling procedures face restrictions because of their destructive character. Hence there is a growing interest in non-invasive techniques, on which proximal soil sensors are based. There is great interest in applying proximal soil sensing to improve the characterization of the buried heritage embedded in the soil landscape at sites such as the Stonehenge World Heritage Site, UK. Because calibration and validation procedures based on invasive practices are unconventional, we turned to the investigation of a well-documented practice trench dug during the First World War (WW1) close to the prehistoric Stonehenge monument. A methodology was tested that would simultaneously invert frequency-domain ground-penetrating radar (GPR) and multi-receiver electromagnetic induction (EMI) data, with the aim of reconstructing the trench network. This trench network could not be distinguished on the EMI apparent electrical conductivity (sigma(a)) measurements, but appeared on the apparent magnetic susceptibility ((a)) data. The GPR measurements showed the trench infilling as strong reflections contrasting with the surrounding soil. However, converting the two-way travel times to absolute depths requires knowledge of the relative permittivity (epsilon(r)). Because of the preference for non-invasive observation in this protected landscape, we developed a procedure integrating the GPR measurements with (a) measurements obtained with EMI. A fitting procedure, assuming a constant susceptibility and permittivity of the sub-surface layers, allowed us to estimate both the susceptibility of the trench fill and the surrounding soil material, and the epsilon(r) value of the material above and within the trench. This provided absolute depth values for the GPR reflection data, improving the lateral and vertical reconstruction of the trench system. Moreover, these results allowed depth slices to be determined from EMIa data. So, integrating both GPR and EMI measurements enabled the detailed reconstruction of the buried trench network at Stonehenge, offering new perspectives on the investigation of features buried within the soil of protected sites.
机译:传统的土壤采样程序由于其破坏性而越来越受到限制。因此,对于近端土壤传感器所基于的非侵入性技术的兴趣日益增长。在英国的巨石阵世界遗产等地,应用近端土壤传感技术来改善埋在土壤景观中的埋藏遗产的特性引起了人们极大的兴趣。由于基于侵入性实践的校准和验证程序是非常规的,因此我们转向对第一次世界大战(WW1)靠近史前巨石阵纪念碑的挖好的有据可查的实践战trench的研究。测试了一种方法,该方法可以同时反转频域地面穿透雷达(GPR)和多接收器电磁感应(EMI)数据,目的是重建沟槽网络。该沟槽网络无法在EMI视在电导率(sigma(a))测量值上进行区分,但会在视在磁化率((a))数据上出现。 GPR测量表明,与周围土壤形成鲜明对比的是,沟渠的填充物是强烈的反射。但是,将双向行程时间转换为绝对深度需要了解相对介电常数(epsilon(r))。由于偏爱在这种受保护的景观中进行非侵入式观察,因此我们开发了一种将GPR测量与(a)EMI测量相结合的程序。假设地下表面层的磁化率和介电常数恒定,则拟合过程使我们既可以估算沟槽填充物和周围土壤材料的磁化率,也​​可以估算沟槽上方和内部的材料的ε值。这为GPR反射数据提供了绝对深度值,从而改善了沟槽系统的横向和垂直重构。此外,这些结果允许从EMIa数据确定深度切片。因此,将GPR和EMI测量值结合起来,就可以对巨石阵的埋沟网络进行详细的重建,从而为研究保护区土壤中埋藏的特征提供了新的视角。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号