...
首页> 外文期刊>Environmental Science and Pollution Research >A Biomimetic Approach to the Detection and Identification of Estrogen Receptor Agonists in Surface Waters Using Semipermeable Membrane Devices (SPMDs) and Bioassay-Directed Chemical Analysis
【24h】

A Biomimetic Approach to the Detection and Identification of Estrogen Receptor Agonists in Surface Waters Using Semipermeable Membrane Devices (SPMDs) and Bioassay-Directed Chemical Analysis

机译:使用半渗透膜装置(SPMD)和生物测定指导的化学分析,在地表水中检测和鉴定雌激素受体激动剂的仿生方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Goal, Scope and Background. Some anthropogenic pollutants posses the capacity to disrupt endogenous control of developmental and reproductive processes in aquatic biota by activating estrogen receptors. Many anthropogenic estrogen receptor agonists (ERAs) are hydrophobic and will therefore readily partition into the abiotic organic carbon phases present in natural waters. This partitioning process effectively reduces the proportion of ERAs readily available for bioconcentration by aquatic biota. Results from some studies have suggested that for many aquatic species, bioconcentration of the freely-dissolved fraction may be the principal route of uptake for hydrophobic pollutants with logarithm n-octanol/water partition coefficient (log K_(ow)) values less than approximately 6.0, which includes the majority of known anthropogenic ERAs. The detection and identification of freely-dissolved readily bioconcen-tratable ERAs is therefore an important aspect of exposure and risk assessment. However, most studies use conventional techniques to sample total ERA concentrations and in doing so frequently fail to account for bioconcentration of the freely-dissolved fraction. The aim of the current study was to couple the biomimetic sampling properties of semipermeable membrane devices (SPMDs) to a bioassay-directed chemical analysis (BDCA) scheme for the detection and identification of readily bioconcentratable ERAs in surface waters. Methods. SPMDs were constructed and deployed at a number of sites in Germany and the UK. Following the dialytic recovery of target compounds and size exclusion chromatographic cleanup, SPMD samples were fractionated using a reverse-phase HPLC method calibrated to provide an estimation of target analyte log K_(ow). A portion of each HPLC fraction was then subjected to the yeast estrogen screen (YES) to determine estrogenic potential. Results were plotted in the form of 'estrograms' which displayed profiles of estrogenic potential as a function of HPLC retention time (i.e. hydrophobicity) for each of the samples. Where significant activity was elicited in the YES, the remaining portion of the respective active fraction was subjected to GC-MS analysis in an attempt to identify the ERAs present. Results and Discussion. Estrograms from each of the field samples showed that readily bioconcentratable ERAs were present at each of the sampling sites. Estimated log K_(ow) values for the various active fractions ranged from 1.92 to 8.63. For some samples, estrogenic potential was associated with a relatively narrow range of log K_(ow) values whilst in others estrogenic potential was more widely distributed across the respective estrograms. ERAs identified in active fractions included some benzophenones, various nonylphenol isomers, benzyl butyl phthalate, dehydroabietic acid, sitosterol, 3-(4-methylbenzyli-dine) camphor (4-MBC) and 6-acetyl-l,l,2,4,4,7-hexamethyl-tetralin (AHTN). Other tentatively identified compounds which may have contributed to the observed YES activity included various polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, methylated benzylphenols, various alkyl-phenols and dialkylphenols. However, potential ERAs present in some active fractions remain unidentified. Conclusions and Outlook. Our results show that SPMD-YES-based BDCA can be used to detect and identify readily bioconcentratable ERAs in surface waters. As such, this biomimetic approach can be employed as an alternative to conventional methodologies to provide investigators with a more environmentally relevant insight into the distribution and identity of ERAs in surface waters. The use of alternative bioassays also has the potential to expand SPMD-based BDCA to include a wide range of toxicological endpoints. Improvements to the analytical methodology used to identify ERAs or other target compounds in active fractions in the current study could greatly enhance the applicability of the methodology to risk assessment and
机译:目标,范围和背景。一些人为污染物具有通过激活雌激素受体来破坏水生生物群落发育和生殖过程的内源性控制的能力。许多人为的雌激素受体激动剂(ERAs)具有疏水性,因此很容易分配到天然水中存在的非生物有机碳相中。这种分配过程有效地减少了可轻易用于水生生物富集的ERAs的比例。一些研究的结果表明,对于许多水生物种,对数正辛醇/水分配系数(log K_(ow))对数值小于6.0的疏水性污染物,其自由溶解部分的生物浓缩可能是其主要吸收途径。 ,其中包括大多数已知的人为ERA。因此,对易溶解易生物浓缩的ERA的检测和鉴定是暴露和风险评估的重要方面。但是,大多数研究使用常规技术对总ERA浓度进行采样,并且这样做经常无法说明自由溶解级分的生物浓度。当前研究的目的是将半透膜装置(SPMD)的仿生采样特性与生物测定指导的化学分析(BDCA)方案相结合,以检测和鉴定地表水中易于生物浓缩的ERA。方法。 SPMD在德国和英国的许多地点建造和部署。透析回收目标化合物并进行大小排阻色谱纯化后,使用经过校准的反相HPLC方法对SPMD样品进行分级分离,以提供目标分析物log K_(ow)的估算值。然后,将每个HPLC级分的一部分进行酵母雌激素筛选(YES),以确定雌激素潜力。将结果以“雌激素图”的形式作图,其显示出每个样品的雌激素潜力作为HPLC保留时间(即疏水性)的函数。如果通过“是”引发了显着的活性,则将相应活性部分的其余部分进行GC-MS分析,以尝试鉴定存在的ERA。结果与讨论。来自每个田间样品的星状图显示,在每个采样点均存在易于生物浓缩的ERA。各种活性成分的估计log K_(ow)值范围为1.92至8.63。对于某些样品,雌激素潜能与log K_(ow)值的相对狭窄范围相关,而在另一些样品中,雌激素潜能分布在各个雌激素图上。活性馏分中鉴定出的ERAs包括一些二苯甲酮,各种壬基酚异构体,邻苯二甲酸苄基丁酯,脱氢松香酸,谷甾醇,3-(4-甲基苄基-丁胺)樟脑(4-MBC)和6-乙酰基-1,l,2,4, 4,7-六甲基四氢化萘(AHTN)。经初步鉴定,可能有助于观察到的YES活性的化合物包括各种多环芳烃(PAH)及其烷基化衍生物,甲基化苄基酚,各种烷基酚和二烷基酚。但是,仍然存在一些活性馏分中潜在的ERA。结论与展望。我们的结果表明,基于SPMD-YES的BDCA可用于检测和识别地表水中易于生物浓缩的ERA。这样,该仿生方法可以用作常规方法的替代方法,以向研究人员提供与地表水中ERAs的分布和特征更为环境相关的见解。替代性生物测定的使用还具有将基于SPMD的BDCA扩展到包括广泛的毒理学终点的潜力。在当前研究中,用于鉴定活性成分中的ERAs或其他目标化合物的分析方法的改进可以大大增强该方法在风险评估和评估中的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号