...
首页> 外文期刊>Biochimica et biophysica acta. Biomembranes >Transport of ions across peritoneal membrane
【24h】

Transport of ions across peritoneal membrane

机译:离子穿过腹膜的转运

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The electrical conductance of ions across the peritoneal membrane of young buffalo (approximately 18-24 months old) has been recorded. Aqueous solutions of NaF, NaNO3, NaCl, Na2SO4, KF, KNO3, KCl, K2SO4, MgCl2, CaCl2, CrCl3, MnCl2, FeCl3, COCl2, and CiCl(2) were used. The conductance values have been found to increase with increase in concentration as well as with temperature (15 to 35 degreesC) in these cases. The slope of plots of specific conductance, K, versus concentration exhibits a decrease in its values at relatively higher concentrations compared to those in extremely dilute solutions. Also, such slopes keep on increasing with increase in temperature. In addition, the conductance also attains a maximum limiting value at higher concentrations in the said cases. This may be attributed to a progressive accumulation of ionic species within the membrane. The K values of electrolytes follow the sequence for the anions: SO42->Cl->NO3->F- while that for the cations: K+>Na4->Ca2+>Mn2+>CO2+>Cu2+>Mg2+>Cr3+>Fe3+. In addition, the diffusion of ions depends upon the charge on the membrane and its porosity. The membrane porosity in relation to the size of the hydrated species diffusing through the membrane appears to determine the above sequence. As the diffiisional paths in the membrane become more difficult in aqueous solutions, the mobility of large hydrated ions gets impeded by the membrane framework and the interaction with the fixed charge groups on the membrane matrix. Consequently, the membrane pores reduce the conductance of small ions, which are much hydrated. An increase in conductance with increase in temperature may be due to the state of hydration, which implies that the energy of activation for the ionic transport across the membrane follows the sequence of crystallographic radii of ions accordingly. The Eyring's equation, kappa=(RT/ Nh)exp[-DeltaH*/RT]exp[DeltaS*/R], has been found suitable for explaining the temperature dependence of conductance in the said cases. This is apparent from the linear plots of log[kappaNh/RT] versus 1/T. The results indicate that the permeation of ions through the membrane giving negative values of DeltaS* suggest that there may be formation of either covalent linkage between the penetrating ions and the membrane material or else the permeation may not be the rate-determining step. On the one hand, a high DeltaS* value associated with the high value of energy of activation, E., for diffusion may suggest the existence of either a large zone of activation or loosening of more chain segments of the membrane. On the other hand, low value of AS* implies that converse is true in such cases, i.e., either a small zone of activation or no loosening of the membrane structure upon permeation. (C) 2004 Elsevier B.V. All rights reserved.
机译:记录了整个年轻水牛(大约18-24个月大)的腹膜上离子的电导率。使用NaF,NaNO3,NaCl,Na2SO4,KF,KNO3,KCl,K2SO4,MgCl2,CaCl2,CrCl3,MnCl2,FeCl3,COCl2和CiCl(2)的水溶液。已经发现,在这些情况下,电导值随浓度增加以及温度(15至35摄氏度)而增加。与在极稀溶液中相比,在相对较高的浓度下,比电导K与浓度的关系曲线的斜率显示出其值的减小。而且,这种斜率随着温度的升高而继续增加。另外,在所述情况下,在较高浓度下,电导也达到最大极限值。这可以归因于离子物质在膜内的逐渐积累。电解质的K值遵循阴离子的顺序:SO42-> Cl-> NO3-> F-,而阳离子的K值遵循以下顺序:K +> Na4-> Ca2 +> Mn2 +> CO2 +> Cu2 +> Mg2 +> Cr3 +> Fe3 +。另外,离子的扩散取决于膜上的电荷及其孔隙率。膜的孔隙率与水合物质通过膜扩散的大小有关,似乎决定了上述顺序。随着在水溶液中膜中的扩散路径变得更加困难,膜框架和与膜基质上固定电荷基团的相互作用阻碍了大水合离子的迁移。因此,膜孔会降低水合程度高的小离子的电导率。电导随温度升高而增加可能是由于水合状态所致,这意味着穿过膜的离子迁移的活化能相应地遵循离子的结晶半径顺序。已经发现艾林方程式κ=(RT / Nh)exp [-DeltaH * / RT] exp [DeltaS * / R]适用于解释所述情况下电导的温度依赖性。从log [kN / h] / 1 / T的线性图可以明显看出。结果表明离子通过膜的渗透给出了DeltaS *的负值,表明渗透离子与膜材料之间可能形成共价键,或者渗透可能不是决定速率的步骤。一方面,与扩散的高活化能E.相关的高DeltaS *值可能表明存在大的活化区或膜的更多链段松弛。另一方面,AS *的值低意味着在这种情况下反之亦然,即,很小的活化区或渗透后膜结构没有松动。 (C)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号