...
首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >Proton pumping in cytochrome c oxidase: Energetic requirements and the role of two proton channels
【24h】

Proton pumping in cytochrome c oxidase: Energetic requirements and the role of two proton channels

机译:质子泵送细胞色素c氧化酶:能量需求和两个质子通道的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
机译:细胞色素C氧化酶是膜结合酶的超家族,催化分子氧向水的能主还原,从而在整个膜上产生电化学梯度。梯度是通过电化学,从膜的相对两侧获取电子和质子以及通过跨整个膜的质子泵送形成的。在最有效的亚家族氧化酶A家族中,每个还原步骤中泵送一个质子,考虑到其中两个还原步骤很可能仅是弱能运动的事实,这是令人惊讶的。基于量子化学计算和实验信息的结合,从热力学和动力学的角度来看,应该有可能向每个电子泵送一个质子,同时自由能释放的分布如此不均匀。减少步骤,至少达到最大梯度的一半。进一步提出了先前提出的泵送机制,以提出在A系列中使用两个质子转移通道的原因。由于质子通过D通道转移到双核中心的速度取决于氧化还原,因此对于低能动性的步骤,其速度可能会变得太慢。因此,需要速率与氧化还原无关的第二个通道,即K通道。还提出了依赖于氧化还原的泄漏可能性,这对于在高梯度下高效节能非常重要。还提出了在细胞色素氧化酶的不同亚家族中质子泵化学计量变化的机制。本文是名为“第18届欧洲生物能源会议”的特刊的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号