首页> 外文期刊>Environmental health perspectives. >Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds.
【24h】

Deducing in vivo toxicity of combustion-derived nanoparticles from a cell-free oxidative potency assay and metabolic activation of organic compounds.

机译:通过无细胞氧化能力测定和有机化合物的代谢活化来推导燃烧衍生的纳米粒子的体内毒性。

获取原文
获取原文并翻译 | 示例
           

摘要

BACKGROUND: The inhalation of combustion-derived nanoparticles (CDNPs) is believed to cause an oxidative stress response, which in turn may lead to pulmonary or even systemic inflammation. OBJECTIVE AND METHODS: In this study we assessed whether the in vivo inflammatory response-which is generally referred to as particle toxicity-of mice to CDNPs can be predicted in vitro by a cell-free ascorbate test for the surface reactivity or, more precisely, oxidative potency (Ox(Pot)) of particles. RESULTS: For six types of CDNPs with widely varying particle diameter (10-50 nm), organic content (OC; 1-20%), and specific Brunauer, Emmett, and Teller (BET) surface area (43-800 m(2)/g), Ox(Pot) correlated strongly with the in vivo inflammatory response (pulmonary polymorphonuclear neutrophil influx 24 hr after intratracheal particle instillation). However, for CDNPs with high organic content, Ox(Pot) could not explain the observed inflammatory response, possibly due to shielding of the Ox(Pot) of the carbon core ofCDNPs by an organic coating. On the other hand, a pathway-specific gene expression screen indicated that, for particles rich in polycyclic aromatic hydrocarbon (PAHs), cytochrome P450 1A1 (CYP1A1) enzyme-mediated biotransformation of bio-available organics may generate oxidative stress and thus enhance the in vivo inflammatory response. CONCLUSION: The compensatory nature of both effects (shielding of carbon core and biotransformation of PAHs) results in a good correlation between inflammatory response and BET surface area for all CDNPs. Hence, the in vivo inflammatory response can either be predicted by BET surface area or by a simple quantitative model, based on in vitro Ox(Pot) and Cyp1a1 induction.
机译:背景:吸入燃烧衍生的纳米颗粒(CDNP)被认为会引起氧化应激反应,进而可能导致肺部甚至全身性炎症。目的和方法:在这项研究中,我们评估了是否可以通过无细胞抗坏血酸测试在体外对小鼠对CDNPs的体内炎症反应(通常称为颗粒毒性)进行预测,或更准确地说,颗粒的氧化能力(Ox(Pot))。结果:对于六种CDNP,其粒径(10-50 nm),有机物含量(OC; 1-20%),比布鲁诺尔,埃米特和特勒(BET)比表面积(43-800 m(2) )/ g),Ox(Pot)与体内炎症反应(气管内滴注24小时后肺多形核中性粒细胞大量流入)密切相关。但是,对于具有高有机含量的CDNP,Ox(Pot)无法解释观察到的炎症反应,可能是由于有机涂层屏蔽了CDNPs碳核的Ox(Pot)。另一方面,途径特异性基因表达筛选表明,对于富含多环芳烃(PAHs)的颗粒,细胞色素P450 1A1(CYP1A1)酶介导的生物可利用有机物的生物转化可能产生氧化应激,从而增强氧化应激。体内炎症反应。结论:两种效应的补偿性质(屏蔽碳核和PAHs的生物转化)导致所有CDNPs的炎症反应与BET表面积之间具有良好的相关性。因此,可以基于体外Ox(Pot)和Cyp1a1诱导,通过BET表面积或简单的定量模型预测体内炎症反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号