...
首页> 外文期刊>Environmental and experimental botany >Sodium (Na+) homeostasis and salt tolerance of plants. (Special Issue: Sustainable cultivation and exploitation of halophyte crops in a salinizing world.)
【24h】

Sodium (Na+) homeostasis and salt tolerance of plants. (Special Issue: Sustainable cultivation and exploitation of halophyte crops in a salinizing world.)

机译:植物的钠(Na + )稳态和耐盐性。 (特刊:盐碱化世界中盐生植物的可持续种植和开发。)

获取原文
获取原文并翻译 | 示例
           

摘要

Soil and water salinity substantially constrain crop and biomass production. Research over the last two plus decades, facilitated by advances in molecular genetics and biotechnology, and with genetic model systems, has identified genes involved in salt acclimation or adaptation and linked these to critical mechanisms and processes. A case in point is present understanding of critical transport determinants that facilitate intra- and intercellular Na+ homeostasis of plants in saline environments predominated by NaCl. Pumps in the plasma membrane (H+-ATPase), and the tonoplast (H+-ATPase) and H+ pyrophosphatases (AVP1) generate proton electrochemical gradients necessary to energize Na+ efflux to the apoplast and influx into vacuoles, respectively. The plasma membrane Na+/H+ antiporter SOS1 is responsible for apoplastic efflux, and NHX type Na+/H+ antiporters for vacuolar and endosomal compartmentalization. Ca2+ext reduces passive intracellular Na+ influx cells by decreasing Na+ transport through high affinity K+ uptake systems and what are presumed to be nonselective cation channels, and activating, through the SOS signal pathway, the SOS1 plasma membrane Na+/H+ antiporter. Moreover, there is greater understanding about how cellular transport systems functionally integrate to facilitate tissue and organismal Na+ homeostasis. Notable in this process are HKT1 Na+ transporters, which regulate Na+ loading into the root xylem, limiting flux to and accumulation in the shoot. This review will summarize ion transport systems that facilitate plant Na+ homeostasis. Halophyte and glycophyte salinity responses and transport determinant function are compared and contrasted. The potential of halophytes as genetic resources for unique alleles or loci of transport protein genes and transcriptional and post-transcriptional regulation of transport protein function are discussed in the context of crop salt tolerance.
机译:土壤和水的盐度极大地限制了作物和生物量的生产。在过去的二十多年里,由于分子遗传学和生物技术的进步以及遗传模型系统的研究,已经确定了与盐适应或适应有关的基因,并将这些基因与关键的机制和过程联系在一起。目前的一个例子是对关键运输决定簇的理解,这些决定簇促进了在NaCl为主的盐环境中植物的细胞内和细胞内Na + 稳态。质膜中的泵(H + -ATPase)和液泡膜(H + -ATPase)和H + 焦磷酸酶(AVP1)生成质子电化学梯度是使Na + 外排向质外体和向液泡中注入所必需的。质膜Na + / H + 反向转运蛋白SOS1负责质外体外排,NHX型Na + / H + 空泡和内体区室化的反向转运蛋白。 Ca 2 + ext 通过减少通过高亲和力K 转运来减少被动细胞内Na + 流入细胞> + 摄取系统以及被认为是非选择性阳离子通道的物质,并通过SOS信号途径激活SOS1质膜Na + / H + 反搬运工。此外,人们对细胞转运系统如何在功能上整合以促进组织和机体Na + 体内平衡的理解也越来越多。在此过程中值得注意的是HKT1 Na + 转运蛋白,其调节Na + 装载到根木质部中,限制了芽中的通量和积累。这篇综述将总结促进植物Na + 动态平衡的离子传输系统。比较和对比了盐生植物和糖生植物盐度反应和运输决定因素功能。在作物耐盐性的背景下,讨论了盐生植物作为运输蛋白基因独特等位基因或基因座的遗传资源的潜力以及运输蛋白功能的转录和转录后调控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号