...
首页> 外文期刊>Engineering Geology >On the impact of temperatures up to 200 degrees C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling
【24h】

On the impact of temperatures up to 200 degrees C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modeling

机译:使用膨润土工程屏障系统对高达200摄氏度的温度对粘土储存库的影响:结合热,水文,化学和机械建模的研究

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most important design variables for a geological nuclear waste repository is the temperature limit up to which the engineered barrier system (EBS) and the natural geologic environment can be exposed. Up to now, almost all design concepts that involve bentonite-backfilled emplacement tunnels have chosen a maximum allowable temperature of about 100 degrees C. Such a choice is largely based on the consideration that in clay-based materials illitization and the associated mechanical changes in the bentonite (and perhaps the clay host rock) could affect the barrier attributes of the EBS. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. This paper presents a fully coupled THMC simulation of a nuclear waste repository in a clay formation with a bentonite-backfilled EBS for 1000 years. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 degrees C and a case in which the temperature in the bentonite near the waste canister peaks at about 100 degrees C. The model simulations demonstrate some degree of illitization in both the bentonite buffer and the surrounding clay formation. Other chemical alterations include the dissolution of K-feldspar and calcite, and precipitation of quartz, chlorite, and kaolinite. In general, illitization in the bentonite and the clay formation is enhanced at higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar; less important ones are the concentration of sodium and the quartz precipitation rate. In our modeling scenarios, the calculated decrease in smectite volume fraction in bentonite ranges from 1 to 8% of the initial volume fraction of smectite in the 100 degrees C scenario and 1-27% in the 200 degrees C scenario. Chemical changes in the 200 degrees C scenario could also lead to a reduction in swelling stress up to 15-18% whereas those in the 100 degrees C scenario result in about 14-15% reduction in swelling stress for the base case scenario. Model results also show that the 200 degrees C scenario results in a much higher total stress than the 100 degrees C scenario, mostly due to thermal pressurization. While cautions should be taken regarding the model results due to some limitations in the models, the modeling worlds illustrative in light of the relative importance of different processes occurring in EBS bentonite and clay formation at higher than 100 degrees C conditions, and could be of greater use when site specific data are available. (C) 2015 Elsevier B.V. All rights reserved.
机译:地质核废料处置库最重要的设计变量之一是温度极限,可以达到设计的屏障系统(EBS)和自然地质环境的极限。到目前为止,几乎所有涉及膨润土回填的隧道设计方案都选择了约100摄氏度的最高允许温度。这种选择主要是基于以下考虑:粘土基材料中的硅酸盐化以及相关的机械变化。膨润土(也许还有粘土基质岩石)可能会影响EBS的屏障属性。但是,现有的关于非法化及其相关性能影响的实验研究和模型研究尚无定论,部分原因是模型中并未完全体现热,水文,化学和机械(THMC)过程之间的相关耦合。本文介绍了使用膨润土回填EBS的黏土地层中的核废料储存库的完全耦合THMC模拟1000年。为了比较,模拟了两种情况:废物罐附近的膨润土中的温度可以达到约200摄氏度的情况,废物罐附近的膨润土中的温度可以达到约100℃的峰值。模型模拟在膨润土缓冲层和周围的粘土中都显示出一定程度的非结晶化。其他化学变化包括钾长石和方解石的溶解,以及石英,亚氯酸盐和高岭石的沉淀。通常,在较高的温度下,膨润土中的钙化和粘土的形成会增强。但是,非法化的数量受许多化学因素的影响,因此变化很大。最重要的化学因素是孔隙水中钾的浓度以及钾长石的丰度和溶解速率。不太重要的是钠的浓度和石英的沉淀速率。在我们的建模方案中,计算得出的膨润土中蒙脱石体积分数的减少范围为100摄氏度场景中蒙脱石初始体积分数的1%至8%,以及200摄氏度场景中蒙脱石初始体积分数的1-27%。在200摄氏度情况下的化学变化也可能导致溶胀应力降低达15-18%,而在100摄氏度情况下的化学变化导致溶胀应力在基本情况下降低约14-15%。模型结果还表明,在200摄氏度的情况下产生的总应力比在100摄氏度的情况下要高得多,这主要是由于热压所致。尽管由于模型中的某些限制而应谨慎对待模型结果,但鉴于在高于100摄氏度的条件下EBS膨润土和粘土形成过程中发生的不同过程的相对重要性,因此建模世界具有说明性,并且可能会更大。当特定于站点的数据可用时使用。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号