...
首页> 外文期刊>Engineering failure analysis >Investigation on failure process and structural optimization of a high pressure letdown valve
【24h】

Investigation on failure process and structural optimization of a high pressure letdown valve

机译:高压泄压阀的失效过程及结构优化研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High pressure letdown valve in direct coal liquefaction is used to adjust the flow rate of coal-oil slurry that enters into the downstream separator. Severe erosion-cavitation wear is found on the valve spool, seriously affecting the safety and reliability of unit. The majority of this paper investigates the failure process of valve spool and proposes a corresponding structural optimization via computational fluid dynamics (CFD) methodology. Three geometries of different failure states are selected as the computational domains in the numerical simulation. The Schneer-Sauer model, particle rebound-velocity model and erosion model are employed to calculate the cavitation phenomenon and erosion rates distribution. Experiments of flow rates and cavitation on valve model under different pressure drops are conducted to validate the accuracy of numerical approach. Results showed that the damage development of valve spool aggravates the erosion-cavitation wear. The maximum erosion rates are located on the top of spool head in all the three states. The erosion rates on spool arc surface are two orders of magnitude higher than that on parabolic surface. The decrease in radius of spool head reduces the intensities of erosion-cavitation wear. The numerical results are in agreement with actual failure morphologies of valve spool in different states. (C) 2016 Elsevier Ltd. All rights reserved.
机译:煤直接液化中的高压卸压阀用于调节进入下游分离器的煤油浆的流量。阀芯上存在严重的腐蚀气蚀磨损,严重影响了设备的安全性和可靠性。本文的大部分内容研究了阀芯的失效过程,并通过计算流体力学(CFD)方法提出了相应的结构优化方法。在数值模拟中,选择了三种不同失效状态的几何形状作为计算域。采用Schneer-Sauer模型,颗粒回弹速度模型和侵蚀模型来计算空化现象和侵蚀速率分布。进行了不同压降下阀门模型的流量和空化实验,以验证数值方法的准确性。结果表明,阀芯的损坏发展加剧了腐蚀气蚀磨损。在所有这三种状态下,最大腐蚀速率都位于阀芯顶部。线轴弧表面的腐蚀速率比抛物线表面的腐蚀速率高两个数量级。线轴头半径的减小减小了腐蚀气蚀磨损的强度。数值结果与不同状态下阀芯的实际失效形态一致。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号