首页> 外文期刊>Engineering failure analysis >Dynamic dip-slip fault rupture in a layered geological medium: Broken symmetry of seismic motion
【24h】

Dynamic dip-slip fault rupture in a layered geological medium: Broken symmetry of seismic motion

机译:分层地质介质中的动态倾滑断层破裂:地震运动的对称性

获取原文
获取原文并翻译 | 示例
           

摘要

As recorded recently on 22 November 2014 during the Nagano-ken Hokubu (Kamishiro Fault), Japan, earthquake, one important observation in dynamic rupture (fracture) related to a shallow dip-slip earthquake (usually assumed as mode-II shear crack propagation from depth towards a free surface) is the broken symmetry of seismic motion in the vicinity of the fracturing fault plane. Generally, the strong motion (particle motion) on the hanging wall is much larger than that on the footwall, but the physical mechanisms causing this asymmetry have not been fully clarified yet. Here, utilising the techniques of finite difference calculations and dynamic photoelasticity in conjunction with high speed cinematography, we investigate the fracture dynamics of a dip-slip fault plane situated near a free surface and try to explain the mechanics behind the asymmetry, numerically as well as experimentally. In our two-dimensional crack-like rupture models, we prepare a flat fault plane, which dips either vertically or at an angle, in a monolithic (scenario (1)) or layered (scenario (2)) linear elastic medium (representing rocks). In the basic scenario (1), when the primary fault rupture initiated at some depth approaches the free surface, four Rayleigh-type waves may be induced: two of them propagate along the free surface as Rayleigh surface waves into the opposite directions to the far field, and the other two travel back downwards along the fractured fault plane as interface waves into depth. If the fault plane is inclined, in the hanging wall, the interface and Rayleigh waves may interact with each other and a shear wave carrying concentrated energy (corner wave) can be produced to cause stronger disturbances. The corner waves, generated by primary fault rupture, may exist only when the fault plane is inclined, i.e. only when the geometry considered is asymmetric. In the scenario (2), however, we indicate that (anti-) symmetry of mode-II seismic motion can be easily broken even in geometrically symmetric models if the secondary fracture is allowed at an interface between layers. If primary vertical dip-slip fault rupture in an (anti-) symmetric model moves from depth and interacts with a horizontal interface that follows, for example, a tensile fracture criterion, basically only the interface segments where the primary rupture induces dynamic tension (in the relatively subsiding footwall) may be fractured and the segments in compression (in the rising hanging wall) may remain unbroken. In this case, in the hanging wall, the dynamic stresses in the upper layer above the interface become relatively large because the compressive parts of the primary rupture-induced wave (rupture front wave) can propagate from the lower layer across the still bonded interface into the upper layer, with less reflection back to the lower one. On the contrary, in the footwall, much of the energy carried by the rupture front wave in the lower layer is reflected at the broken interface and dynamic disturbances in the upper layer tend to become smaller. Thus, the strong motion on the hanging wall is expected to become larger than that on the footwall not only in geometrically asymmetric cases but also in symmetric ones. (C) 2015 Elsevier Ltd. All rights reserved.
机译:正如最近在2014年11月22日日本长野县北部地震(Kamishiro断层)期间记录的那样,动态破裂(断裂)中的一项重要观察与浅层滑滑地震有关(通常假定为II型剪切裂缝的传播)。朝向自由表面的最大深度)是断裂断层平面附近地震运动的破碎对称性。通常,悬挂壁上的强运动(粒子运动)比后壁上的强运动大得多,但是导致这种不对称的物理机制尚未完全阐明。在这里,利用有限差分计算和动态光弹性技术结合高速摄影技术,我们研究了位于自由表面附近的倾滑断层平面的断裂动力学,并试图从数值上解释不对称现象背后的机理。实验上。在我们的二维裂纹状破裂模型中,我们准备了一个平坦的断层平面,该断层平面垂直或成一定角度浸入到整体式(场景(1))或分层(场景(2))线性弹性介质中(代表岩石) )。在基本情况(1)中,当在某个深度启动的一次断层破裂接近自由表面时,可能会诱发出四个瑞利型波:其中两个瑞利型波沿着瑞利表面波向相反的方向传播,从而沿自由面传播。当界面波进入深度时,另外两个沿断裂的断层平面向下返回。如果断层平面倾斜,则在悬壁中,界面波和瑞利波可能会相互作用,并且会产生携带集中能量(角波)的剪切波,从而引起更强的扰动。由主断层破裂产生的角波仅在断层平面倾斜时才存在,即仅在所考虑的几何形状不对称时才存在。然而,在场景(2)中,我们表明,即使在层间界面处允许二次断裂,即使在几何对称模型中,II型地震运动的(反)对称也很容易破坏。如果(反)对称模型中的主要垂直倾滑断层破裂从深度移开并与遵循例如拉伸断裂准则的水平界面相互作用,则基本上只有主要破裂会引起动态张力的界面段(在(相对下陷的底壁)可能会破裂,处于压缩状态的部分(在上升的悬挂壁中)可能会保持不破裂。在这种情况下,在吊壁中,界面上方的上层中的动应力变得相对较大,这是因为一次破裂诱发波(破裂前波)的压缩部分可以从下层穿过仍然粘结的界面传播到上层,向下层的反射较少。相反,在下壁,下层破裂前波携带的大部分能量在破裂的界面处反射,上层的动态扰动趋于变小。因此,不仅在几何上不对称的情况下,而且在对称的情况下,悬壁上的强运动也有望比后壁上的强运动更大。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号