...
首页> 外文期刊>Biochimica et biophysica acta. Bioenergetics >The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria
【24h】

The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria

机译:心脏线粒体(RaM)中钙的快速吸收方式:与肝线粒体中RaM的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A mechanism of Ca~(2+) uptake, capable of sequestering significant amounts of Ca~(2+) from cytosolic Ca~(2+) pulses, has previously been identified in liver mitochondria. This mechanism, the Rapid Mode of Ca~(2+) uptake (RaM), was shown to sequester Ca~(2+) very rapidly at the beginning of each pulse in a sequence [Sparagna et al. (1995) J. Biol. Chem. 270, 27510 - 27515]. The existence and properties of RaM in heart mitochondria, however, are unknown and are the basis for this study. We show that RaM functions in heart mitochondria with some of the characteristics of RaM in liver, but its activation and inhibition are quite different. It is feasible that these differences represent different physiological adaptations in these two tissues. In both tissues, RaM is highly conductive at the beginning of a Ca~(2+) pulse, but is inhibited by the rising [Ca~(2+)] of the pulse itself. In heart mitochondria, the time required at low [Ca~(2+)] to reestablish high Ca~(2+) conductivity via RaM i.e. the 'resetting time' of RaM is much longer than in liver. RaM in liver mitochondria is strongly activated by spermine, activated by ATP or GTP and unaffected by ADP and AMP. In heart, RaM is activated much less strongly by spermine and unaffected by ATP or GTP. RaM in heart is strongly inhibited by AMP and has a biphasic response to ADP; it is activated at low concentration and inhibited at high concentrations. Finally, an hypothesis consistent with the data and characteristics of liver and heart is presented to explain how RaM may function to control the rate of oxidative phosphorylation in each tissue. Under this hypothesis, RaM functions to create a brief, high free Ca~(2+) concentration inside mitochondria which may activate intramitochondrial metabolic reactions with relatively small amounts of Ca~(2+) uptake. This hypothesis is consistent with the view that intramitochondrial [Ca~(2+)] may be used to control the rate of ADP phosphorylation in such a way as to minimize the probability of activating the Ca~(2+)-induced mitochondrial membrane permeability transition (MPT).
机译:先前已经在肝线粒体中发现了一种从细胞质Ca〜(2+)脉冲中隔离大量Ca〜(2+)的Ca〜(2+)吸收机制。已显示这种机制,即Ca〜(2+)吸收的快速模式(RaM),可以在每个脉冲开始时非常快速地隔离Ca〜(2+)[Sparagna et al.。 (1995)生物化学杂志。化学270,27510-27515]。然而,RaM在心脏线粒体中的存在和性质尚不清楚,并且是这项研究的基础。我们显示RaM在心脏线粒体中具有肝中RaM的一些特征,但其激活和抑制作用却大不相同。这些差异在这两个组织中代表不同的生理适应性是可行的。在两个组织中,RaM在Ca〜(2+)脉冲开始时都具有很高的导电性,但是受脉冲本身[Ca〜(2+)]升高的抑制。在心脏线粒体中,在低[Ca〜(2+)]下通过RaM重新建立高Ca〜(2+)电导率所需的时间,即RaM的“复位时间”比在肝脏中长得多。肝线粒体中的RaM被精胺强烈激活,被ATP或GTP激活,而不受ADP和AMP影响。在心脏中,精氨酸激活RaM的作用要弱得多,并且不受ATP或GTP的影响。心脏中的RaM被AMP强烈抑制,并且对ADP具有双相反应。它在低浓度时被激活而在高浓度时被抑制。最后,提出了与肝脏和心脏的数据和特征一致的假设,以解释RaM如何控制每个组织中氧化磷酸化的速率。在此假设下,RaM的作用是在线粒体内产生短暂的高游离Ca〜(2+)浓度,这可能会激活线粒体内的代谢反应,并吸收相对少量的Ca〜(2+)。该假设与以下观点一致:线粒体内[Ca〜(2+)]可用于控制ADP磷酸化的速率,以最大程度地激活Ca〜(2+)诱导的线粒体膜通透性过渡(MPT)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号