...
首页> 外文期刊>Cell stress & chaperones >Iron depletion with deferoxamine protects bone marrow-derived mesenchymal stem cells against oxidative stress-induced apoptosis
【24h】

Iron depletion with deferoxamine protects bone marrow-derived mesenchymal stem cells against oxidative stress-induced apoptosis

机译:去铁胺的铁耗竭可保护骨髓来源的间充质干细胞免受氧化应激诱导的细胞凋亡

获取原文
获取原文并翻译 | 示例

摘要

Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent cells with self-renewal properties, making them an ideal candidate for regenerative medicine. Recently, numerous studies show that about more than 99 of transplanted cells are destroyed because of the stressful microenvironment. Meanwhile, in the target organs, iron overload can produce oxidative stress introducing it as the most important stress factor. The present study was aimed at increasing BM-MSCs' viability against oxidative stress microenvironment using iron depletion by deferoxamine (DFO). Mesenchymal stem cells are isolated and characterized from rat bone marrow. Then, the sensitivity of BM-MSCs against H2O2-induced oxidative stress was evaluated through half of the inhibitory concentration (IC50) estimation by using MTT assay. The maximum non-inhibitory concentration of DFO on BM-MSCs was determined. The next step was the comparison between DFO pre-treated BM-MSCs and untreated cells against H2O2-induced apoptosis. BM-MSCs were identified with morphologic and flow cytometry analysis. IC(50)of H(2)O(2)was determined as 0.55 mM at 4 h. Also, the maximum non-inhibitory concentration of DFO was ascertained as 5 mu M at 48 h. Our results demonstrated that pretreatment with DFO significantly potentiates BM-MSCs against H2O2-induced oxidative stress which was confirmed by MTT assay, AO/EB double staining, DAPI staining, and activated caspase 3 quantification as well as western blot test. Expression of cleaved caspase 3 and pAKT/AKT ratio obviously demonstrated DFO can resist the cells against cytotoxicity. These findings may help to develop better stem cell culture medium for MSC-based cell therapy. Moreover, regulation of cell stress can be used in practical subjects.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号