...
首页> 外文期刊>Iron & Steelmaker >Blast Furnace Hearth Management for Safe and Long Campaigns
【24h】

Blast Furnace Hearth Management for Safe and Long Campaigns

机译:高炉炉膛管理,确保安全长效生产

获取原文
获取原文并翻译 | 示例

摘要

Various sections of the hearth will show different wear mechanisms and have a different life expectancy. Most likely, wear of the taphole (s) is more severe than the bottom, and (local) interim repairs permit safe campaign extension. Of all known attack mechanisms, water damage and carbon deposition caused by CO disintegration appear to be the most dangerous attack mechanisms. To obtain a good impression of wear progress, installing a large array of thermocouples (200 to 256) in critical locations and making regular "hearth health" review reports is suggested. These reports should primarily be based on TC analysis, but all other relevant information regarding hearth condition should be reviewed as well. The results should be compared with and verified by thermal computer models, with specific emphasis on the tuning of the boundary condition of the models. The nonlinear effects of the formation of a brittle zone will usually make any thermocouple analysis and computer model calculation unreliable. We recommend also performing a series of core drillings into the hearth sidewall when the life of the hearth exceeds a certain age, and when the presence of a brittle zone must be verified. Each individual hearth design should set up a well-defined "extension strategy" by defining maximum temperature limits of individual thermocouples and safe distances of solid material with a temperature below 450 deg C. Further management of a hearth must be done by translating these limits into operational action plans and even repair projects. If the general condition of the hearth and or the taphole has become worse because of progressive wear and the predefined wear or temperature limits are exceeded, a number of technologies are available to repair the hearth from the outside, while leaving the burden inside. Usually this is done for tapholes, but similar repairs can also be done in the lower "elephant foot" areas. The installation of high conductivity graphite directly against the shell in these areas greatly improves the life expectancy and reduces operational risks during the remaining years of the campaign.
机译:炉膛的各个部分将显示出不同的磨损机理,并具有不同的预期寿命。最有可能的是,出铁孔的磨损比底部的磨损更严重,并且(局部)临时维修可以安全地进行运动。在所有已知的攻击机制中,由CO分解引起的水损害和碳沉积似乎是最危险的攻击机制。为了获得良好的磨损进度印象,建议在关键位置安装大量热电偶(200至256个)并定期进行“炉膛健康”审查报告。这些报告应主要基于TC分析,但有关壁炉状况的所有其他相关信息也应进行审查。应将结果与热计算机模型进行比较并通过热计算机模型进行验证,尤其要重点关注模型边界条件的调整。脆性区形成的非线性效应通常会使任何热电偶分析和计算机模型计算不可靠。当炉床的寿命超过一定寿命并且必须确认存在脆性区时,我们还建议对炉床侧壁进行一系列岩心钻探。每个炉床设计都应通过定义各个热电偶的最大温度极限以及温度低于450摄氏度的固体材料的安全距离来建立明确的“扩展策略”。必须通过将这些限值转换为炉膛的深度来进行进一步的管理行动计划甚至维修项目。如果由于渐进磨损而使炉膛和/或出铁口的一般状况变得更糟,并且超出了预定义的磨损或温度极限,则可以使用多种技术从外部修复炉膛,同时将负担留在内部。通常,这是针对出铁孔完成的,但是在“大象脚”下部也可以进行类似的维修。在这些区域的其余年份中,将高电导率石墨直接安装在壳体上可大大提高使用寿命,并降低操作风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号