首页> 外文期刊>Energy Technology: Generation,Conversion,Storage,Distribution >A Hydrodynamic Study of a Fast-Bed Dual Circulating Fluidized Bed for Chemical Looping Combustion
【24h】

A Hydrodynamic Study of a Fast-Bed Dual Circulating Fluidized Bed for Chemical Looping Combustion

机译:快速循环双循环流化床化学循环燃烧的流体力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study explores the use of a dual interconnected circulating fluidized bed (CFB) for chemical looping combustion. This design can enhance gas-solid interactions, but it is difficult to control the solid transfer and circulation rates. With the use of a 1:1 scale cold-flow model, an investigation determining the hydrodynamic behavior of the dual CFB system has been conducted. The cold-flow system consists of two identical fast-bed risers, each with an internal diameter of 100mm and a height of 7m. The simplified cold-flow model is based on the chemical looping Pilot-Scale Advanced CO2 Capture Technology (PACT) facility at Cranfield. Here, we have determined the minimum fluidization and transport velocities, and we have assessed the solid density profiles, transport capacity, and potential for the dilution by air/N-2 leakage into the CO2 stream exiting the fuel reactor. The experimental procedure uses two different bed materials, molochite (ceramic clay) and FE100 (iron particles), and it satisfies the dynamic scaling laws to model the bed inventory within the system. The results indicate that the two fast-bed risers share similar density and pressure profiles. Stable circulation can be achieved through pneumatic transport. The circulation rate of the system is flexible and can be adjusted by altering the fluidization velocity in the riser and by altering the bed inventory. The gas leakage from the loop seal to the cyclone was found to be sensitive to the bed height and fluidization velocity in the loop seal. However, by maintaining a loop-seal bed height above 600mm during operation, the outlet stream remains undiluted.
机译:这项研究探索了使用双互连循环流化床(CFB)进行化学循环燃烧的方法。这种设计可以增强气固相互作用,但是很难控制固体的传输和循环速率。使用1:1比例的冷流模型,已经进行了确定双CFB系统水动力行为的研究。冷流系统由两个相同的快速床立管组成,每个立管的内径为100mm,高度为7m。简化的冷流模型基于Cranfield的化学循环中试规模先进的CO2捕集技术(PACT)设备。在这里,我们确定了最小的流化速度和运输速度,并评估了固体密度分布,运输能力以及通过空气/ N-2泄漏进入离开燃料反应器的CO2流的稀释潜力。实验程序使用了两种不同的床层材料,即软陶土(陶瓷粘土)和FE100(铁颗粒),并且满足了动态缩放定律,可以对系统中的床层模型进行建模。结果表明,两个快速床立管具有相似的密度和压力分布。通过气动运输可以实现稳定的循环。该系统的循环速率是灵活的,可以通过改变提升管中的流化速度和改变床的存量来进行调节。发现从环路密封件到旋风分离器的气体泄漏对环路密封件中的床高度和流化速度敏感。但是,通过在操作过程中将环封床的高度保持在600mm以上,出口流不会被稀释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号