...
首页> 外文期刊>Boundary-layer Meteorology >Aerodynamic roughness of the sea surface at high winds
【24h】

Aerodynamic roughness of the sea surface at high winds

机译:大风时海面的空气动力学粗糙度

获取原文
获取原文并翻译 | 示例

摘要

The role of the surface roughness in the formation of the aerodynamic friction of the water surface at high wind speeds is investigated. The study is based on a wind-over-waves coupling theory. In this theory waves provide the surface friction velocity through the form drag, while the energy input from the wind to waves depends on the friction velocity and the wind speed. The wind-over-waves coupling model is extended to high wind speeds taking into account the effect of sheltering of the short wind waves by the air-flow separation from breaking crests of longer waves. It is suggested that the momentum and energy flux from the wind to short waves locally vanishes if they are trapped into the separation bubble of breaking longer waves. At short fetches, typical for laboratory conditions, and strong winds the steep dominant wind waves break frequently and provide the major part of the total form drag through the air-flow separation from breaking crests, and the effect of short waves on the sea drag is suppressed. In this case the dependence of the drag coefficient on the wind speed is much weaker than would be expected from the standard parameterization of the roughness parameter through the Charnock relation. At long fetches, typical for the field, waves in the spectral peak break rarely and their contribution to the air-flow separation is weak. In this case the surface form drag is determined predominantly by the air-flow separation from breaking of the equilibrium range waves. As found at high wind speeds up to 60 m s-p# the modelled aerodynamic roughness is consistent with the Charnock relation, i.e. there is no saturation of the sea drag. Unlike the aerodynamic roughness, the geometrical surface roughness (height of short waves) could be saturated or even suppressed when the wind speed exceeds 30 m s-p#.
机译:研究了表面粗糙度在高风速下形成水表面气动摩擦的作用。该研究基于风浪耦合理论。在该理论中,波浪通过形式阻力提供表面摩擦速度,而从风向波浪输入的能量取决于摩擦速度和风速。考虑到通过将气流与长波的破裂波峰分开而对短波进行掩护的效果,将风浪耦合模型扩展到高风速。建议将风向短波的动量和能量通量如果被困在打破长波的分离泡中,则局部消失。在短时取水(通常在实验室条件下使用)和强风时,陡峭的主导风波经常破裂,并通过气流与断裂波峰的分离提供了总阻力的主要部分,短波对海阻力的影响是压抑。在这种情况下,阻力系数对风速的依赖性要比通过沙诺克关系根据粗糙度参数的标准参数化所期望的弱得多。在长距离取水时(通常是该场),频谱峰中的波很少破裂,并且它们对气流分离的作用很弱。在这种情况下,表面形式的阻力主要由与平衡范围波的破裂所引起的气流分离决定。正如在高达60 m s-p#的高风速下发现的那样,模型化的空气动力学粗糙度与夏诺克(Charnock)关系一致,即海阻力没有饱和。与空气动力学粗糙度不同,当风速超过30 m s-p#时,几何表面粗糙度(短波高度)可能会饱和甚至被抑制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号