首页> 外文期刊>International Journal of Damage Mechanics >Modeling of the Heterogeneous Damage Evolution at the Granular Scale in Polycrystals under Complex Cyclic Loadings
【24h】

Modeling of the Heterogeneous Damage Evolution at the Granular Scale in Polycrystals under Complex Cyclic Loadings

机译:复杂循环载荷下多晶颗粒尺度上非均质损伤演化的建模

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, a new extension of a micromechanical approach proposed recently by the authors is developed to predict the damaged behavior of polycrystals under various multiaxial cyclic loading paths. The model is expressed in the time dependent plasticity for a small strain assumption. With the framework of the continuum damage mechanics (CDM), it is assumed that a scalar damage variable (d{sup}g) initiates and then evolves at the granular level where the phenomenon of the localized plastic deformation occurs. The driving force of this variable depends on the granular elastic and inelastic energies. This variable can globally describe the microcrack and/or microcavity. The developed aspects involve the development of a new mesodamage initiation criterion, which depends not only on the accumulated granular plastic strain but also on the applied loading path complexity; another new criterion related to macroscopic damage initiation is also developed through the probabilistic approach of Weibull. This gives finally a mixed approach (micromechanical-probabilistic). An experimental program is proposed with the purpose of studying the cyclic behavior of the aluminum alloy 2024. Hence, a series of cyclic uniaxial and biaxial tests is performed up to final fracture of the specimens. After the model parameters identification, the model is examined to demonstrate that it is powerful in reproducing the low-cycle fatigue behavior of the employed alloy. Moreover, an application of the model under various cyclic loading types is qualitatively conducted showing the model's ability in describing the principal phenomena observed, especially, in multiaxial plastic fatigue.
机译:在这项研究中,作者最近提出了一种微机械方法的新扩展,以预测多晶循环载荷路径下多晶的破坏行为。对于小应变假设,模型以时间相关的可塑性表示。在连续损伤力学(CDM)的框架下,假设标量损伤变量(d {sup} g)会启动,然后在发生局部塑性变形现象的颗粒级别演变。该变量的驱动力取决于粒状弹性和非弹性能量。此变量可以全局描述微裂纹和/或微腔。发达的方面涉及新的介损起始准则的发展,该准则不仅取决于累积的粒状塑性应变,还取决于所施加的加载路径复杂性。通过威布尔的概率方法,还开发了与宏观破坏引发有关的另一个新标准。最后,这给出了一种混合方法(微机械概率)。为了研究铝合金2024的循环行为,提出了一个实验程序。因此,进行了一系列循环单轴和双轴测试,直到试样最终断裂。在确定模型参数之后,对模型进行检查以证明其在重现所用合金的低周疲劳行为方面非常有效。此外,定性地进行了模型在各种循环载荷类型下的应用,表明模型具有描述所观察到的主要现象的能力,尤其是在多轴塑性疲劳中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号