...
首页> 外文期刊>International Journal of Damage Mechanics >A Finite Strain Plastic-damage Model for High Velocity Impact using Combined Viscosity and Gradient Localization Limiters: Part I - Theoretical Formulation
【24h】

A Finite Strain Plastic-damage Model for High Velocity Impact using Combined Viscosity and Gradient Localization Limiters: Part I - Theoretical Formulation

机译:结合粘度和梯度局域限制器的高速冲击有限应变塑性损伤模型:第一部分-理论公式

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

During dynamic loading processes, large inelastic deformation associated with high strain rates leads, for a broad class of ductile metals, to degradation and failure by strain localization. However, as soon as material failure dominates a deformation process, the material increasingly displays strain softening and the finite element computations are considerably affected by the mesh size and alignment. This gives rise to a non-physical description of the localized regions. This article presents a theoretical framework to solve this problem with the aid of nonlocal gradient-enhanced theory coupled to viscoinelasticity. Constitutive equations for anisotropic thermoviscodamage (rate-dependent damage) mechanism coupled with thermo-hypoelasto-viscoplastic deformation are developed in this work within the framework of thermodynamic laws, nonlinear continuum mechanics, and nonlocal continua. Explicit and implicit micro structural length-scale measures, which preserve the well-posedness of the differential equations, are introduced through the use of the viscosity and gradient localization limiters. The gradient-enhanced theory that incorporates macroscale interstate variables and their high-order gradients is developed here to describe the change in the internal structure and to investigate the size effect of statistical inhomogeneity of the evolution related plasticity and damage. The gradients are introduced in the hardening internal state variables and are considered dependent on their local counterparts. The derived microdamage constitutive model is destined to be applied in the context of high velocity impact and penetration damage mechanics. The theoretical framework presented in this article can be considered as a feasible thermodynamic approach that enables to derive various gradient (visco) plasticity/(visco) damage theories by introducing simplifying assumptions. Besides the clear physical significance of the proposed framework, it also defines a very convenient context for the efficient numerical integration of the resulting constitutive equations. This aspect is explored in Part II of this work and the application of the framework proposed herein to the numerical simulation of high velocity impacts on metal plates.
机译:在动态加载过程中,与高应变率相关的大的非弹性变形会导致多种塑性金属因应变局部化而退化和失效。但是,一旦材料破坏控制了变形过程,材料就会越来越多地显示出应变软化,并且有限元计算受到网格大小和对齐方式的很大影响。这引起了局部区域的非物理描述。本文提出了一个理论框架,借助非局部梯度增强理论和粘弹性来解决该问题。在热力学定律,非线性连续体力学和非局部连续体的框架下,本工作建立了各向异性热粘弹性(速率相关损伤)机理与热-低弹-粘塑性变形的本构方程。通过使用粘度和梯度局限性限制器,引入了显式和隐式的微观结构长度尺度度量,这些度量保留了微分方程的适定性。这里发展了结合宏观尺度的州际变量及其高阶梯度的梯度增强理论,以描述内部结构的变化并研究与演化有关的可塑性和破坏的统计不均匀性的大小效应。梯度被引入到硬化内部状态变量中,并且被认为取决于它们的局部对应物。导出的微损伤本构模型注定要在高速冲击和穿透破坏力学中应用。本文介绍的理论框架可以被认为是可行的热力学方法,通过引入简化的假设,可以得出各种梯度(粘性)可塑性/(粘性)损伤理论。除了所提出框架的明显物理意义外,它还为生成的本构方程的有效数值积分定义了非常方便的上下文。这方面的工作将在本工作的第二部分中进行探讨,并将本文提出的框架应用于在金属板上高速撞击的数值模拟中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号