...
首页> 外文期刊>Electronics and Electrical Engineering >Design of Hybrid Model of Fertilizers Production Process for Automatic Control Purpose
【24h】

Design of Hybrid Model of Fertilizers Production Process for Automatic Control Purpose

机译:自动控制肥料生产过程混合模型的设计。

获取原文
获取原文并翻译 | 示例

摘要

Fertilizers are broadly divided into organic fertilizers (composed of enriched organic matter - plant or animal), or inorganic fertilizers (composed of synthetic chemicals and/or minerals). Inorganic fertilizer is often synthesized using the Haber-Bosch process, which produces ammonia as the end product. This ammonia is used as a feedstock for other nitrogen fertilizers, such as anhydrous ammonium nitrate and urea. Control technologies develope very rapidly, and process automatic control is now ubiquitous within industries. In receant years, modern automatic control technologies are closely related to modelling in chemical industries. For the high quality automatic control purpose one needs to have a reliable process model. Besides, chemical industries save money using models for process control and optimization purposes [1]. With increasing reliance on information technology, systematic decision-making strategies are essential for effective and efficient performance including fertilizers industry systems. To maintain its successes, the industry must be flexible and adaptable to new technologies, external pressures and changing markets. All of these challenges require systematic improvement methodology and advanced technologies for control, optimization and planning. The most commonly used advanced control techniques include such efficiency inferential without analyzer based optimization and modelling, process modeling and system identification (first-principle models and empirical models). The chemical processes under consideration is characterized by the complex reaction systems [2, 4, and 6]. Hence, it is not possible to describe the process in detail using only first-principle and mechanistic models. To overcome the limitations the hybrid modelling has been used in chemical and biochemical engineering for many years (e. g., [6]). Besides, often it is difficult to describe the chemical processes using only classic methods, which are given in the automatic control theory. Although, using hybrid models improve benefits for modelling and identification of chemical or biochemical processes. On the other hand, the successful identification of hybrid models using "black box" models is possible having consistent experimental data. One needs to use suitable hybrid model identification method, which gives good modelling quality and is effective and robust [6]. Besides, hybrid model application for chemical processes requires considering the application of artificial neuron networks. Moreover, in chemical technology one is most often interested in modelling of specific reaction rates, because they define the behaviour of the conversions in chemical processes. Specific reaction rates have to be determined using feed-forward artificial neural networks where the inputs are the key factors influencing the process dynamics - the concentrations of the reacting components, temperature, pressure, etc. In the recently published literature, some interesting examples show that hybrid combination of artificial neural networks, mechanistic kinetics and mass balance equations can lead to considerable advantages [2, 6]. On the other hand, many classical identification methods [3] may fail or do not lead to a solution of required precision.
机译:肥料大致分为有机肥料(由富含有机物的植物或动物组成)或无机肥料(由合成化学物质和/或矿物质组成)。无机肥料通常使用Haber-Bosch工艺合成,该工艺产生氨作为最终产品。该氨水用作其他氮肥(如无水硝酸铵和尿素)的原料。控制技术发展非常迅速,而过程自动控制现在在工业中无处不在。在过去的几年中,现代自动控制技术与化学工业中的建模密切相关。为了实现高质量的自动控制,需要一种可靠的过程模型。此外,化学工业使用模型进行过程控制和优化可节省资金[1]。随着对信息技术的日益依赖,系统的决策策略对于包括化肥工业系统在内的有效绩效至关重要。为了保持成功,该行业必须灵活并适应新技术,外部压力和不断变化的市场。所有这些挑战都需要系统的改进方法和用于控制,优化和计划的先进技术。最常用的高级控制技术包括无需基于分析器的优化和建模,过程建模和系统识别(第一原理模型和经验模型)的效率推断。所考虑的化学过程的特征在于复杂的反应系统[2、4和6]。因此,不可能仅使用第一原理和机理模型来详细描述该过程。为了克服这些限制,混合建模已经在化学和生化工程中使用了许多年(例如,[6])。此外,通常很难仅使用自动控制理论中给出的经典方法来描述化学过程。虽然,使用混合模型可提高对化学或生化过程进行建模和识别的好处。另一方面,使用“黑匣子”模型成功识别混合模型可能具有一致的实验数据。人们需要使用合适的混合模型识别方法,该方法具有良好的建模质量,并且是有效且健壮的[6]。此外,化学过程的混合模型应用需要考虑人工神经元网络的应用。此外,在化学技术中,人们最常对特定反应速率的建模感兴趣,因为它们定义了化学过程中转化的行为。必须使用前馈人工神经网络确定特定的反应速率,其中输入是影响过程动力学的关键因素-反应组分的浓度,温度,压力等。在最近发表的文献中,一些有趣的例子表明:人工神经网络,力学动力学和质量平衡方程的混合组合可以带来相当大的优势[2,6]。另一方面,许多经典的识别方法[3]可能会失败或不会导致所需精度的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号