...
首页> 外文期刊>International Journal of Mineral Processing >Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology
【24h】

Kinetic modeling and optimization of flotation process in a cyclonic microbubble flotation column using composite central design methodology

机译:复合中心设计方法在旋风微泡浮选塔中浮选过程的动力学建模和优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, a composite central design with five levels and four variables was employed to model and optimize the batch flotation kinetic process in a cyclonic microbubble flotation column (FCMC). 30 sets of batch flotation rate tests were executed at different conditions of pulp concentration (X-1), frother dosage (X-2), flow rate of circulation pulp (X-3) and froth depth (X-4). It was observed the maximum flotation time (t(max)) obtained in tests fluctuated wildly under different conditions. Statistical analysis based on the model fit and stability was performed to discriminate six kinetic models. The response surface methodology was used for the identification and development of significant relationship between process variables. Statistical analysis indicated that the modified Kelsall model was the optimal kinetic model for characterizing the flotation process. Analysis of variance results revealed that the effect of X-1 was significant for all process responses. X-4 was found as a significant independent factor for the two response variables of tmax and the ultimate combustible recovery (a.) of the optimal kinetic model. X-3 had a significant influence on the parameter of the optimal kinetic model (the fraction of flotation components with the slow rate constant). Furthermore, the maximum flotation time and a,. were significantly influenced by the interaction between X-1 and X-4. Based on the result of optimization it was found that the desired ultimate combustible recovery with an appropriate flotation time was obtained from the flotation process with a given range of experimental variables (Xi: from the intermediate levels to the higher levels; X-2: the intermediate level; X-3: 220 g/t and X-4: 25.00 mm). There was an acceptable relationship between predicted and actual values with one of the optimal conditions (Adj. R-2 = 0.9971). The response surface methodology was effective for predicting and optimizing the batch flotation process of FCMC. (C) 2016 Elsevier B.V. All rights reserved.
机译:在这项工作中,采用了具有五个级别和四个变量的复合中心设计,以模拟和优化旋风微泡浮选塔(FCMC)中的间歇浮选动力学过程。在不同的纸浆浓度(X-1),起泡剂量(X-2),循环纸浆流量(X-3)和泡沫深度(X-4)的条件下,进行了3​​0套批量浮选率测试。观察到在不同条件下剧烈波动的测试中获得的最大浮选时间(t(max))。进行了基于模型拟合和稳定性的统计分析,以区分六个动力学模型。响应面方法用于识别和开发过程变量之间的重要关系。统计分析表明,改进的Kelsall模型是表征浮选过程的最佳动力学模型。方差结果分析表明,X-1的影响对于所有过程响应都是显着的。发现X-4是tmax和最佳动力学模型的最终可燃回收率(a。)的两个响应变量的重要独立因子。 X-3对最佳动力学模型的参数(具有慢速常数的浮选组分的分数)有重大影响。此外,最大浮选时间和。 X-1和X-4之间的相互作用显着影响了它们。根据优化结果,发现在一定的实验变量范围内,从浮选过程中获得了具有适当浮选时间的所需最终可燃物回收率(Xi:从中级到较高级; X-2:中等水平; X-3:220克/吨,X-4:25.00毫米)。在最佳条件之一下,预测值与实际值之间存在可接受的关系(调整R-2 = 0.9971)。响应面法可有效预测和优化FCMC的分批浮选工艺。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号