首页> 外文期刊>Earth-Science Reviews: The International Geological Journal Bridging the Gap between Research Articles and Textbooks >Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment)
【24h】

Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment)

机译:中亚造山带(中段)早期中生代花岗岩类岩浆作用的演化,来源和构造意义

获取原文
获取原文并翻译 | 示例
           

摘要

Numerous Early Mesozoic granitoids have been recognized from the central segment of the Central Asian Orogenic Belt (CAOB). They can be broadly classified into two groups according to zircon U-Pb ages: an early-stage group covering the time span from Early to Middle Triassic (250-230. Ma) and a late-stage group emplaced during Late Triassic to Early Jurassic (ca. 230-190. Ma). Early-stage (250-230. Ma) granitoids are mainly distributed in the western Central Mongolia-Erguna Belt (CMEB), the western Altai Belt (AB), the South Mongolia-Xing'an Belt (SMXB) and the Beishan-Inner Mongolia-Jilin Belt (BIJB). They consist mainly of quartz-diorites, granodiorites and monzogranites, mostly of I-type, with minor mafic intrusions, with some of them showing adakite-like signatures and some with S-type features. Late-stage (230-190. Ma) granitoids mainly occur in the North Mongolia-Transbaikalia Belt (NMTB), the eastern CMEB (Erguna massif) and the eastern Altai Belt (AB). They are predominately syenogranites, monzogranites and syenites, associated with many alkaline granites and mafic intrusions and are A-type and transitional I-A type or highly fractionated I-type granites.Whole-rock Sr-Nd and zircon Hf isotopic data have been compiled for regional isotopic mapping. The -_(Nd) (t) values show large variations from -7.0 to +7.4 and Nd model ages (T_(DM)) from 0.46Ga to 1.43Ga as well as the initial Sr isotopic ratios (Sr_i) from 0.7023 to 0.7174. The zircon ε_(Hf) (t) values vary from -4.6 to +15.3 and give two-stage Hf model ages (T_(DM2)) from 0.30Ga to 2.09Ga. The extremely large variations of whole-rock Sr-Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions that are mainly dominated by juvenile components with significant old crustal participation. Furthermore, the late-stage granitoids in the NMTB, the CMEB and the AB generally have more negative ε_(Nd)(t) values and more variable zircon ε_(Hf)(t) values than those of the early-stage granitoids in the same belt, implying an increasing crustal signature from early- to late-stage in the assumed heterogeneous source regions within the same belt, which probably results from melting of shallower crust in parallel with a shift to more alkaline chemistry of the late granitoid magmas. By contrast, most late-stage granitoids in the SMXB and the BIJB have more positive εNd(t) values and homogeneous zircon εHf(t) values than those of the early-stage granitoids in the same belt, indicating more juvenile contribution to the source of the these granitoids.The generation of the Early Mesozoic granitoid magmas in the NMTB and the CMEB was dominated by the ongoing closure of the Mongol-Okhotsk Ocean and some was probably related to a mantle plume process. They were possibly derived from subducted materials melting or juvenile components with some probable contributions from ancient continental crust. Early Mesozoic granitoid magmas in the SMXB, the AB and the BIJB were generated in a post-on-orogenic setting after the closure of the Paleo-Asian Ocean and were the results of partial melting of crustal components in response to underplating of mantle-derived magmas, most likely linked to lithospheric thickening and delamination and asthenospheric upwelling. Early Mesozoic granitoid magmatism provides critical information on Mesozoic post-accretionary tectonic evolution of the Paleo-Asian Ocean and transitional tectonic regimes from Early Mesozoic subduction to Late Mesozoic closure of the Mongol-Okhotsk Ocean as well as post-accretionary continental growth.
机译:从中亚造山带(CAOB)的中段已经发现了许多早期中生代花岗岩。根据锆石的U-Pb年龄,它们大致可分为两类:一个早期组,涵盖从早三叠纪到中三叠纪(250-230。Ma)的时间段,一个晚期组,在三叠纪晚期到侏罗纪早期。 (大约230-190。Ma)。早期(250-230。Ma)的花岗石主要分布在中西部蒙古-埃尔古纳带(CMEB),西部阿尔泰带(AB),南蒙古-兴安带(SMXB)和北山-内陆蒙古-吉林带(BIJB)。它们主要由石英闪长岩,花岗闪长岩和辉长花岗岩组成,大部分为I型,少量的镁铁质侵入体,其中一些表现出类似akakite的特征,另一些则具有S型的特征。后期(230-190。Ma)花岗岩体主要分布在北蒙古-特贝卡利亚带(NMTB),东部CMEB(额尔古纳断层块)和东部阿尔泰带(AB)。它们主要是正长花岗岩,辉长花岗岩和正长岩,与许多碱性花岗岩和镁铁质侵入岩有关,属于A型和过渡性IA型或高度分级的I型花岗岩。已为整个区域编制了整个岩石的Sr-Nd和锆石Hf同位素数据同位素映射。 -_(Nd)(t)值显示从-7.0到+7.4的大变化,Nd模型年龄(T_(DM))从0.46Ga到1.43Ga,初始Sr同位素比(Sr_i)从0.7023到0.7174 。锆石的ε_(Hf)(t)值在-4.6到+15.3之间变化,并给出了从0.30Ga到2.09Ga的两阶段Hf模型年龄(T_(DM2))。整个岩石中Sr-Nd和Zrcon Hf同位素的极大变化表明源区的同位素异质性很强,主要是由具有重要的旧地壳参与的幼年成分所主导。此外,NMTB,CMEB和AB中的后期花岗质通常比早期的花岗质类具有更多的负ε_(Nd)(t)值和更多的锆石ε_(Hf)(t)值。同一带,这意味着同一带内假定的非均质源区的地壳特征从早期到后期都有增加的趋势,这可能是由于较浅地壳的熔化以及晚期花岗岩类岩浆向碱性的转变所致。相比之下,与同一带中的早期花岗岩相比,SMXB和BIJB中大多数晚期花岗岩类的εNd(t)值和均质锆石εHf(t)值都更高,表明幼年对来源的贡献更大NMTB和CMEB中早期中生代花岗岩岩浆的形成主要是由于蒙古-鄂霍次克海的持续封闭所致,其中一些可能与地幔柱流过程有关。它们可能来自俯冲的物质融化或幼年成分,可能来自古代大陆壳。 SMXB,AB和BIJB中的早中生代花岗质岩浆是在古亚洲洋关闭后的后/非造山环境中产生的,这是由于地幔底部被覆而使地壳成分部分融化的结果。衍生岩浆,最有可能与岩石圈增厚,分层和软流圈上升有关。早中生代花岗岩类岩浆作用提供了有关古亚洲海洋中生代后增生构造演化以及从早期中生代俯冲到蒙古-鄂霍次克海中生代封闭晚期以及增生后大陆生长的过渡构造形态的重要信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号