...
首页> 外文期刊>International Journal of Mineral Processing >The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners
【24h】

The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners

机译:絮凝剂溶液的输送和添加条件对重力浓缩机进料口性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-liquid separation of tailings slurries in gravity thickeners relies on the efficient mixing of slurry and dilute polymer flocculant solutions within the feedwell. Computational fluid dynamics (CFD) can provide predictions of solids distribution, liquor velocity and shear rate within a feedwell, and with the incorporation of an adsorption model, can also assess the effectiveness of flocculant mixing. This study presents the first use of feedwell CFD to examine the effect of the flocculant inlet direction and velocity on the subsequent distribution and adsorption of flocculant. When flocculant is injected inside the feed stream, a high inlet nozzle velocity will maximise adsorption, with injection preferably vertically upward or towards the feedwell walls. For injection inside the dilution stream (vertical upflow of liquor within the feedwell), the flocculant should be directed either upwards or inwards away from the strong downward flow of the feed stream, with the velocity not critical. At flocculant inlet velocities predicted by CFD to enhance mixing and adsorption, the shear rate experienced within the injection pipe exceeds that in the feedwell, and the duration under higher shear may be greater. Pipe flow studies for several flocculants have confirmed reductions in activity at a solution concentration of 0.025 wt. percent; this effect diminishes with greater dilution. Much of this lost activity is recovered on standing, indicating that the applied shear leads to a mixture of chain scission (irreversible) and entanglement (reversible). Minimising the duration of such shear effects on flocculant solution transport to the feedwell is essential, as the potential for increased flocculant demand and reduced flocculation efficiency can easily exceed any benefit from improved feedwell mixing.
机译:重力浓缩机中尾矿浆液的固液分离依赖于进料井中浆液和稀聚合物絮凝剂溶液的有效混合。计算流体动力学(CFD)可以预测进料口内的固体分布,液体速度和剪切速率,并且通过结合吸附模型,还可以评估絮凝剂混合的有效性。这项研究提出了首次使用给料井CFD检测絮凝剂入口方向和速度对絮凝剂随后分布和吸附的影响。当将絮凝剂注入进料流内部时,较高的入口喷嘴速度将使吸附最大化,且注入最好垂直向上或朝进料口壁进行。为了在稀释流内部进行注射(进料口内液体的垂直向上流动),应将絮凝剂引导至远离进料流强烈向下的方向向上或向内,速度并不严格。在通过CFD预测以增强混合和吸附的絮凝剂入口速度下,注入管内经历的剪切速率超过了进料口中的剪切速率,并且在较高剪切下的持续时间可能更长。对几种絮凝剂的管道流量研究已证实,在浓度为0.025 wt。%的溶液中,活性会降低。百分;随着稀释度的增加,这种作用减弱。失去的大部分活动都可以在站立时恢复,这表明所施加的剪切力会导致断链(不可逆)和缠结(可逆)的混合。使絮凝剂溶液输送到进料口的剪切作用的持续时间最小是至关重要的,因为增加絮凝剂需求和降低絮凝效率的潜力很容易超过改善进料口混合的任何好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号