首页> 外文期刊>Earth, planets and space: EPS >High-accuracy statistical simulation of planetary accretion: I. Test of the accuracy by comparison with the solution to the stochastic coagulation equation
【24h】

High-accuracy statistical simulation of planetary accretion: I. Test of the accuracy by comparison with the solution to the stochastic coagulation equation

机译:行星增长的高精度统计模拟:I.通过与随机凝结方程的解进行比较来检验精度

获取原文
获取原文并翻译 | 示例
           

摘要

The object of this series of studies is to develop a highly accurate statistical code for describing the planetary accumulation process. In the present paper, as a first step, we check the validity of the method proposed by Wetherill and Stewart (1989) by comparing the results obtained by their method with the analytical solution to the stochastic coagulation equation (or to a well-evaluated numerical solution). As the collisional probability A_(ij) between bodies with masses of im_1 and jm_1 (m_1 being the unit mass), we consider the two cases: one is A_(ij) propor.to i X j and another is A_(ij) propor.to min (i, j) (i~(1/3)+j~(1/3))(i+j). In both cases, it is known that runaway growth occurs. The latter case corresponds to a simplified model of the planetesimal accumulation. We assumed that a collision of two bodies leads to their coalescence. Wetherill and Stewart's method contains some parameters controlling the practical numerical computation. Among these, two parameters are important: the mass division parameter #delta#, which determines the mass ratio of the adjacent mass batches, and the time division parameter implied by , which controls the size of a time step in numerical integration. Through a number of numerical simulations for the case of A_(ij)=i X j, we find that when #delta# <=1.6 and implied by <= 0.03 the numerical simulation can reproduce the analytical solution within a certain level of accuracy independently of the size of the body system. For the case of the planetesimal accumulation, it is shown that the simulation with #delta# <= 1.3 and implied by <= 0.04 can describe precisely runaway growth. Because the accumulation process is stochastic, in order to obtain reliable mean values it is necessary to take the ensemble mean of the numerical results obtained with different random number generators. It is also found that the number of simulations, N_c, demanded to obtain the reliable mean value is about 500 and does not strongly depend on the functional form of A_(ij). From the viewpoint of the numerical handling, the above value of #delta# (<= 1.3) and N_c (approx 500) are reasonable and, hence, we conclude that the numerical method proposed by Wetherill and Stewart is a valid and useful method for describing the planetary accumulation process. The real planetary accumulation process is more complex since it is coupled with the velocity evolution of the planetesimals. In the subsequent paper, we will complete the high-accuracy statistical code which simulate the accumulation process coupled with the velocity evolution and test the accuracy of the code by comparing with the results of N-body simulation.
机译:这一系列研究的目的是开发一种高度精确的统计代码,以描述行星的累积过程。在本文中,作为第一步,我们将Wetherill和Stewart(1989)提出的方法的结果与随机混凝方程(或经过良好评估的数值)的解析解进行比较,从而验证了该方法的有效性解)。由于质量为im_1和jm_1(m_1为单位质量)的物体之间的碰撞概率A_(ij),我们考虑两种情况:一种是A_(ij)等于i X j,另一种是A_(ij)赞成到min(i,j)(i〜(1/3)+ j〜(1/3))(i + j)。在这两种情况下,都知道发生了失控的增长。后一种情况对应于小行星累积的简化模型。我们假设两个物体的碰撞导致它们的合并。 Wetherill和Stewart的方法包含一些控制实际数值计算的参数。在这两个参数中,重要的是两个参数:确定相邻质量批次的质量比的质量划分参数#delta#和由隐含的时分参数,该参数控制数值积分中时间步长的大小。通过针对A_(ij)= i X j的情况进行大量数值模拟,我们发现,当#delta#<= 1.6且隐含<= 0.03时,数值模拟可以独立地在一定精度水平上重现解析解。身体系统的大小。对于小行星积累的情况,表明在#delta#<= 1.3且隐含在<= 0.04的情况下进行的模拟可以精确地描述失控的增长。由于累加过程是随机的,因此为了获得可靠的平均值,有必要对使用不同随机数生成器获得的数值结果进行整体平均。还发现获得可靠平均值所需的模拟次数N_c约为500,并且与A_(ij)的函数形式没有很大关系。从数值处理的角度来看,#delta#(<= 1.3)和N_c(大约500)的上述值是合理的,因此,我们得出结论,Wetherill和Stewart提出的数值方法是一种有效且有用的方法。描述行星的积累过程。实际的行星累积过程更加复杂,因为它与小行星的速度演化有关。在随后的论文中,我们将完成高精度的统计代码,该代码将模拟累积过程以及速度演化,并通过与N体仿真结果进行比较来测试该代码的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号