首页> 外文期刊>Earth Surface Processes and Landforms: The journal of the British Geomorphological Research Group >Large values of hydraulic roughness in subglacial conduits during conduit enlargement: implications for modeling conduit evolution
【24h】

Large values of hydraulic roughness in subglacial conduits during conduit enlargement: implications for modeling conduit evolution

机译:冰川扩大过程中冰川下管道的水力粗糙度值大:对管道演化建模的意义

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic roughness accounts for energy dissipated as heat and should exert an important control on rates of subglacial conduit enlargement by melting. Few studies, however, have quantified how subglacial conduit roughness evolves over time or how that evolution affects models of conduit enlargement. To address this knowledge gap, we calculated values for two roughness parameters, the Darcy-Weisbach friction factor (f) and the Manning roughness coefficient (n), using dye tracing data from a mapped subglacial conduit at Rieperbreen, Svalbard. Values of f and n calculated from dye traces were compared with values of f and n calculated from commonly used relationships between surface roughness heights and conduit hydraulic diameters. Roughness values calculated from dye tracing ranged from 75-0.97 for f and from 0.68-0.09 s m~(-1/3) for n. Equations that calculate roughness parameters from surface roughness heights underpredicted values of f by as much as a factor of 326 and values of n by a factor of 17 relative to values obtained from the dye tracing study. We argue these large underpredictions occur because relative roughness in subglacial conduits during the early stages of conduit enlargement exceeds the 5% range of relative roughness that can be used to directly relate values of f and n to flow depth and surface roughness heights. Simple conduit hydrological models presented here show how parameterization of roughness impacts models of conduit discharge and enlargement rate. We used relationships between conduit relative roughness and values of f and n calculated from our dye tracing study to parameterize a model of conduit enlargement. Assuming a fixed hydraulic gradient of 0.01 and ignoring creep closure, it took conduits 9.25 days to enlarge from a diameter of 0.44 m to 3 m, which was 6-7-fold longer than using common roughness parameterizations.
机译:水力不平度将能量作为热量散失,应该对融化引起的冰下导管扩张的速度施加重要控制。但是,很少有研究量化冰川下导管粗糙度如何随时间演变,或者这种演变如何影响导管扩张模型。为了解决这一知识鸿沟,我们使用来自斯瓦尔巴特群岛Rieperbreen的地图冰川下导管的染料示踪数据,计算了两个粗糙度参数的值,Darcy-Weisbach摩擦系数(f)和Manning粗糙度系数(n)。将根据染料迹线计算出的f和n值与根据表面粗糙度高度和导管水力直径之间的常用关系计算出的f和n值进行比较。由染料示踪计算出的粗糙度值对于f为75-0.97,对于n为0.68-0.09 s m〜(-1/3)。从表面粗糙度高度计算粗糙度参数的方程式相对于从染料追踪研究获得的值而言,f的预测值低估了326倍,n的预测值却低了17倍。我们认为发生这些大的预测不足是因为在导管扩张初期,冰川下导管中的相对粗糙度超过了相对粗糙度的5%范围,该范围可用于将f和n的值直接与流动深度和表面粗糙度高度相关。这里介绍的简单管道水文模型显示了粗糙度参数化如何影响管道排放和扩大率的模型。我们使用导管相对粗糙度与根据染料追踪研究计算出的f和n值之间的关系来参数化导管扩大模型。假设固定的水力坡度为0.01,而忽略了蠕变闭合,那么导管从直径0.44 m增大到3 m所需的时间为9.25天,这比使用常规粗糙度参数设置要长6-7倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号