首页> 外文期刊>Ecosystems >Whole-Stream Metabolism Responds to Spawning Pacific Salmon in Their Native and Introduced Ranges
【24h】

Whole-Stream Metabolism Responds to Spawning Pacific Salmon in Their Native and Introduced Ranges

机译:全流代谢响应原生和引入范围内产卵的太平洋鲑鱼。

获取原文
获取原文并翻译 | 示例
       

摘要

Pacific salmon (Oncorhynchus spp.) perform important ecological roles in stream ecosystems by provisioning nutrients as resource subsidies and modifying their physical habitat as ecosystem engineers. These contrasting roles result in concurrent nutrient enrichment and benthic disturbance, where local environmental characteristics potentially determine which effect predominates. Whole-stream metabolism quantifies the functional response to salmon and may identify patterns in enrichment and disturbance not apparent from structural measurements alone. We measured ecosystem respiration (ER) and gross primary production (GPP), along with chemical and physical characteristics, in seven Southeast Alaska streams and two Michigan streams, before and during the salmon run. These streams in the native and introduced ranges of salmon differed in environmental characteristics, from geomorphology at the reach scale to climate at the biome scale. Salmon consistently increased ER across streams and biomes, from an average (+/- SE) of 1.92 +/- A 0.23 g O-2 m(-2) d(-1) before salmon to 6.30 +/- A 1.08 g O-2 m(-2) d(-1) during the run. In the cobble-bottom streams of Southeast Alaska, GPP doubled from 0.29 +/- A 0.05 g O-2 m(-2) d(-1) before salmon to 0.66 +/- A 0.16 g O-2 m(-2) d(-1) during the run. In contrast, GPP responded inconsistently to salmon in the sand-bottom Michigan streams, increasing in one and decreasing in the other. Patterns in ER and GPP among streams and time periods were predicted by stream water nutrients (for example, ammonium, soluble reactive phosphorus) rather than by physical characteristics (for example, light, sediment size, and so on). This study demonstrates that salmon can periodically override physical controls on ER and GPP and enhance whole-stream metabolism via their dual ecological roles as both resource subsidies and ecosystem engineers.
机译:太平洋鲑鱼(Oncorhynchus spp。)通过提供营养素作为资源补贴并修改其作为生态系统工程师的自然栖息地,在河流生态系统中发挥重要的生态作用。这些相反的作用导致同时的养分富集和底栖扰动,而当地的环境特征可能决定哪种作用占主导。全流代谢可量化对鲑鱼的功能反应,并可能识别出仅通过结构测量无法发现的富集和干扰模式。在鲑鱼运行之前和期间,我们在阿拉斯加东南部的七个溪流和密歇根州的两个溪流中测量了生态系统呼吸(ER)和初级总产值(GPP),以及化学和物理特性。鲑鱼的本地和引进范围内的这些溪流的环境特征各不相同,从触及范围的地貌到生物群落范围的气候。鲑鱼在溪流和生物群落中的ER持续增加,从鲑鱼之前的1.92 +/- A 0.23 g O-2 m(-2)d(-1)的平均(+/- SE)到6.30 +/- A 1.08 g O在运行期间为-2 m(-2)d(-1)。在阿拉斯加东南部的鹅卵石底流中,GPP从鲑鱼之前的0.29 +/- A 0.05 g O-2 m(-2)d(-1)翻倍至0.66 +/- A 0.16 g O-2 m(-2) )d(-1)。相反,GPP对密歇根州沙底河中的鲑鱼反应不一致,一种增加,另一种减少。 ER和GPP在水流和时间段之间的模式是通过水流养分(例如铵,可溶性反应性磷)而不是物理特征(例如光,沉积物大小等)来预测的。这项研究表明,鲑鱼可以周期性地超越对ER和GPP的物理控制,并通过其作为资源补贴和生态系统工程师的双重生态作用来增强全流代谢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号