...
首页> 外文期刊>Ecosystems >Using information theory to determine optimum pixel size and shape for ecological studies: aggregating land surface characteristics in Arctic ecosystems.
【24h】

Using information theory to determine optimum pixel size and shape for ecological studies: aggregating land surface characteristics in Arctic ecosystems.

机译:使用信息论确定生态学研究的最佳像素大小和形状:汇总北极生态系统中的陆地表面特征。

获取原文
获取原文并翻译 | 示例

摘要

Quantifying vegetation structure and function is critical for modeling ecological processes, and an emerging challenge is to apply models at multiple spatial scales. Land surface heterogeneity is commonly characterized using rectangular pixels, whose length scale reflects that of remote sensing measurements or ecological models rather than the spatial scales at which vegetation structure and function varies. We investigated the 'optimum' pixel size and shape for averaging leaf area index (LAI) measurements in relatively large (85 m2 estimates on a 600x600-m2 grid) and small (0.04 m2 measurements on a 40x40-m2 grid) patches of sub-Arctic tundra near Abisko, Sweden. We define the optimum spatial averaging operator as that which preserves the information content (IC) of measured LAI, as quantified by the normalized Shannon entropy (ES,n) and Kullback-Leibler divergence (DKL), with the minimum number of pixels. Based on our criterion, networks of Voronoi polygons created from triangulated irregular networks conditioned on hydrologic and topographic indices are often superior to rectangular shapes for averaging LAI at some, frequently larger, spatial scales. In order to demonstrate the importance of information preservation when upscaling, we apply a simple, validated ecosystem carbon flux model at the landscape level before and after spatial averaging of land surface characteristics. Aggregation errors are minimal due to the approximately linear relationship between flux and LAI, but large errors of approximately 45% accrue if the normalized difference vegetation index (NDVI) is averaged without preserving IC before conversion to LAI due to the nonlinear NDVI-LAI transfer function.
机译:量化植被结构和功能对于建模生态过程至关重要,而新出现的挑战是在多个空间尺度上应用模型。地表异质性通常以矩形像素为特征,矩形像素的长度尺度反映的是遥感测量或生态模型的尺度,而不是植被结构和功能发生变化的空间尺度。我们调查了“最佳”像素尺寸和形状,以便在相对较大的尺寸(600x600-m 2 网格上的估计值为85 m 2 )上平均叶面积指数(LAI)的测量结果,瑞典阿比斯库附近的北极北极冻原的小块(在40x40-m 2 网格上的测量值为0.04 m 2 )。我们将最佳空间平均算子定义为保留测量的LAI的信息内容(IC)的算子,该算子由归一化的Shannon熵( E S,n )和Kullback量化-最小散度( D KL ),像素数最少。根据我们的标准,以水文和地形指数为条件的三角不规则网络创建的Voronoi多边形网络通常优于矩形,以便在某些通常更大的空间比例上平均LAI。为了证明升迁时保留信息的重要性,我们在土地表面特征的空间平均之前和之后在景观水平上应用了一个简单的,经过验证的生态系统碳通量模型。由于通量和LAI之间近似线性关系,聚集误差很小,但是如果归一化差异植被指数(NDVI)在不保存IC之前平均归一化差异植被指数(NDVI)的情况下,由于非线性NDVI-LAI传递函数,则会产生大约45%的大误差。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号